伦敦帝国理工学院机器学习和自然语言处理著名学者Marek Rei 教授从2016年起,每年都会对ML&NLP相关的会议论文进行统计和分析,并一年一度发表分析结果,目前已成为该领域权威性的报告内容。近期,Marek Rei 再次发布2019年度机器学习和自然语言处理(ML&NLP)领域的年度统计。从其分析中,我们可以清晰地看到在ML&NLP领域到底哪家单位最狂(非谷歌莫属),哪些单位实例雄厚,哪位学者研究突飞猛进,以及中美之间实力差距如何巨大。根据Marek Rei教授的报告结果,我们一一进行分析!注:报告统计数据来源于2019年机器学习和NLP相关的会议和期刊,其中统计范围包括ACL,EMNLP,NAACL,EACL,COLING,TACL,CL,CoNLL,NeurIPS,ICML,ICLR,AAAI。1、NeurIPS指数式增长几乎所有的会议都在2019年破了纪录,尤其是NeurIPS,曾指数上升趋势,根据数据显示其规模是最大的,而且领先AAAI接近300篇论文。当然,由于COLING和EACL在2019年没有举办,所以没有统计其数据。2、谷歌发文最多,清北排名前十2019年论文发表数量最多的机构是哪个呢?其中谷歌顺利占据了领先地位,在各个领域都发表了大量的论文。例如,在 ICML 上,谷歌发表的论文数量是紧随其后的MIT 的两倍有余。值得一提的是,Marek 之前几年的统计中曾将DeepMind的论文也囊括在谷歌发表的论文之中,而在这一次则将DeepMind 的论文发表情况单独列出。微软和 CMU 也发表了大量的研究成果,在所有会议上发表的论文数总量分别排在第二、第三。而清华大学、北京大学,则是中国进入各大会议论文数总量前十的两所高校,分别排在第七、第九,这也说明了近年来中国高校在学术论文上的影响力日益攀升。3、八年争夺,微软、CMU总量第一,谷歌上升迅猛接下来我们来看2012年至2019年的总体数据。虽然在2019年由谷歌占据主导地位,然而CMU 和微软在2012年至2019年整场“马拉松式”的拉锯战中遥遥领先。并且值得一提的是,CMU 和微软在2012年至2019年的论文发表数量完全相同,都为1215篇论文。排在两者其后的,是谷歌、斯坦福大学、MIT、IBM、伯克利大学、清华大学和北京大学。如果我们再看下时间分段数据,我们会发现谷歌上升势头迅猛。虽然在2012年至2016年,谷歌发表的论文总数要比CMU和微软的少得多,但是从2018年开始,它的论文发表数就开始远超包括CMU和微软在内的其他所有机构。而所有排在前列的机构都呈上升趋势,在2019年发表的论文数量都远比此前发表的论文数量要多。其中,中国机构表现最突出的清华大学,虽然论文发表数量在前几年中都一直较大地落后于国外机构,但在所有机构总体上升的趋势下,以高于平均上升趋势的幅度,终于在2019年拿下第七的排名,实属不易!4、Sergey年产33篇论文,刘知远25篇位列华人第一就个人作者而言,伯克利的 Sergey Levine 在2019年总共发表了33篇论文,其中在NeurIPS 上12篇,ICML上6篇,ICLR上15篇。其他比较高产的作者分别是:卡内基·梅隆的Neubig、蒙特利尔的Yoshua Bengio。清华大学的刘知远副教授以25篇排名第四(华人第一),其次是微软亚研院秦涛研究员(24篇)以及其同事刘铁岩(23篇)。此外,北大的孙栩、加州大学圣塔芭芭拉分校的王威廉、腾讯AI Lab的Shuming Shi也不分上下,分别发表了21、21、20篇论文,排名前十以内。我们还注意到统计中包括了西湖大学的张岳(18篇)、微软的高剑峰(18篇)、Caiming Xiong(18篇)、哈工大刘挺(17篇)、北大赵东岩(18篇)等。5、八年期,Yoshua Bengio晋级第一,周明、张岳、刘挺华人前三将2012~2019年的数据作为一个整体来看,蒙特利尔的Yoshua Bengio已经取代了DeepMind的Chris Dyer成为最高产的作者。位列第三的微软周明,第四的西湖大学张岳、华盛顿大学的 Noah A. Smith 以及位列第六的哈尔滨工业大学的刘挺有超过90篇论文产出。这里需要强调,由于中国学者英文重名现象比较严重,为了统计方便,列表中删除了Yang Liu这一作者,因为有多人用此名字对论文署名,导致难以分辨。这导致清华大学计算机系的刘洋教授没有被统计排名。以“年”为节点进行观察,Sergey Levine、Graham Neubig、Yoshua Bengio各自发表的文章的数量都比前几年要多,而且这几个人也都超过了Chris Dyer在2016年创下的记录。另外,值得注意的是西湖大学张岳的论文发表在2015、2016年达到最高产,刘挺则是在2014年发表最多。6、以一作之名,平均两个月可发一篇顶会论文论文的第一作者通常是论文初稿的写作人,实验设计的主要参与者以及实验的主要执行者。一般能够在第一作者署名意味着在论文里面的贡献比较大。下面让我们看看论文第一作者的情况。Gabriele Farina 是卡内基梅陇四年级的博士生,他以第一作者的身份发表论文6篇,其中有3篇被NeurIPS收录。威斯康星大学的Diakonikolas,杜克大学的 Hanrui Zhang、新加坡国立大学的Rui Zhang以及清华大学的武楚涵、北京大学的杨鹏程、普林斯顿的 Sanjeev Arora、微软的Zeyuan Allen-Zhu、IBM的 Mikhail Yurochkin也都有5篇论文是第一作者的署名。.其中清华大学的武楚涵三篇文章发在了EMNLP上,北京大学的杨鹏程有五篇文章发表在了ACL上面。纵观第一作者的论文,其中微软的Zeyuan Allen-Zhu、香侬科技李纪为、剑桥的Ivan Vuli?和Ryan Co、亚马逊的Young-Bum Kim以及普林斯顿的Sanjeev Arora发表的论文最全面,涉及的顶会最多。其中李纪为在七个会议上发表了论文,数量颇丰位列第一。7、中美差距,何止一丁点!分析2019年各国家和地区的论文发表数量,这还是首次。不可否认地,下面这张统计图展示了美国在 AI 领域“力压群山”的主导地位,不过中国、英国、德国和加拿大在该领域所发挥的影响力也不容小觑。单独从各大会议会议上来看,中国在 AAAI 上的论文发表数量甚至与美国持平,可见中国研究者在 AAAI 上扮演着举足轻重的角色。另外中国在NeurIPS、EMNLP、ACL 等会议上的表现也非常出色,虽然可能不及在 AI 领域本就拥有先天优势的美国,但是遥遥领先于其他国家和地区。下图展示了2012年至2019年各国家和地区的论文发表总数,整体排名和差距情况与2019年各国家和地区的发表论文数量差不多。这些年来,美国的论文发表数量都一直远超其他国家和地区,并且现在还在加速拉大这一差距。而中国则在拼尽全力与美国匹敌,如今也以不断增大的幅度领先于美国以外的其他国家和地区。而英国虽然在论文发表数量以及增长幅度上不及美国和中国,也还是牢牢锁住了第三的位置。美国—企业主导由于美国2019年的论文发表数量在所有国家和地区中占据了遥遥领先的主导地位,因而以下这张美国2019年论文发表数量统计图整体情况与各大机构2019年论文发表数量统计图差不多,谷歌依旧遥遥领先,而微软和CMU 依旧排在第二、第三。中国—高校领先在中国,高校是论文发表的中坚力量,排在前十的有九所高校,仅有一家企业。清华大学和北京大学分别锁住了第一、第二的宝座,二者在国际舞台上的表现同样不菲,是中国进入全球各机构论文发表排行榜前十仅有的两所高校,近年来对于 AI 领域的整体发展做出了较大的贡献和推动作用。中国科学院大学、中国科学院、南京大学是论文发表数量排在第三至第五的高校,三所高校在 中国乃至全球 AI 领域扮演的角色同样出类拔萃,不仅有该领域的领军人物坐镇,如周志华等,还有为 AI 领域培养了一大批人才,如中科院计算所等机构。而企业同样是中国论文发表的一只辅助力量,其中百度、阿里巴巴是其中表现比较出色的企业,分别成立了科研性的实验室,近年来也发表了大量的科研论文。英国— DeepMind的传奇在英国, 谷歌麾下的DeepMind 遥遥领先,其后是剑桥大学、牛津大学、爱丁堡大学、伦敦大学学院、帝国理工大学和阿兰图灵机构。值得注意的是,阿兰图灵机构由剑桥、牛津、爱丁堡、华威和伦敦大学学院五所大学领导,所有该机构的论文发表数据与其他几所大学有一定交叉,因此具体数据比较模糊。论文发表数量排在前七的机构中,剑桥大学和爱丁堡大学主要聚焦于 NLP 领域,而其他机构则主要专注于 ML 领域。德国—NLP一家独大在德国,达姆施塔特工业大学是论文发表数量最多的机构,尤其是在 NLP 领域,论文发表数量占德国论文发表总数的2/3。罗伯特·博世有限公司总体论文发表数量排在第二,但 ML 领域的论文发表数量却是德国机构中最多的。随后是萨尔大学、慕尼黑大学、图宾根大学、慕尼黑工业大学、马克斯普朗克智能系统研究所,分别排在第三至第第七的位置。加拿大—三足鼎立在加拿大,多伦多大学的论文发表数量是各机构中最出类拔萃的,排在第一,随后是蒙特利尔大学、Vector 人工智能研究院,分别排第二、第三。滑铁卢大学是聚焦于 NLP 领域研究的唯一一所机构,而其他机构的论文大多数都发表在 ML 的相关会议上。8、国际合作的多元化,中国还有待提升Marek 也做了另外一项分析,即根据论文研究课题进行相似性分析,得出一些有意思的结论:首先是组织之间的相似性,从下图可以看出,来自中国的大学主要集中在图的上部分,美国大学主要在图的右侧,欧洲则在左侧,企业在中间。因此可以看出研究课题即是非常具有区域性的,高校之间的相互合作受地域影响很大,而企业则相对就比较灵活。相似性也可以应用到作者的分析上,下图的紧密度反映了研究者之间研究课题的相似性和合作频率。从图中可以看出秦涛(Tao Qin)和刘铁岩(Tie-Yan Liu)很近,这很容易理解,他们都在微软亚洲研究院工作。也可以将相似性分析应用到国家和地区。不过鉴于每个国家都会有许多不同的主题,下面这个图可能更能代表它们的合作频率。中国居于右下角,距离较近的是新加坡、澳大利亚、日本等,但距离其他国家和地区就比较远了,例如与台湾、韩国、法国等的合作就不是很紧密。而美国和英国在国际合作上相对比较多元化。9、因崔斯汀的统计数据最后,让我们再来看一些有趣的数据:1)提及GitHub(就是指有代码开放)的论文占比:ACL 有70 %的论文、 EMNLP 有69%,的论文、 NAACL有68%的论文、 ICLR 有56%的论文、 NeurIPS有46%的论文、ICML 有45%的论文、 AAAI 有31%的论文提及GitHub。如此来看,NLP领域的论文似乎大多都免费开放了论文代码。2)单篇论文作者最多有24位,论文是《 CoSQL: A Conversational Text-to-SQL Challenge Towards Cross-Domain Natural Language Interfaces to Databases》(地址:https://arxiv.org/abs/1909.05378)3)标题最长的论文:《What if We Simply Swap the Two Text Fragments? A Straightforward yet Effective Way to Test the Robustness of Methods to Confounding Signals in Nature Language Inference Tasks》(地址:https://arxiv.org/abs/1809.02719)4)标题最短的论文:《Graph U-Nets》(地址:https://arxiv.org/abs/1905.05178)参考来源:https://www.marekrei.com/blog/ml-and-nlp-publications-in-2019/