本文基于小梅哥的FPGA学习所得。
推荐一个更加完善的笔记
00.FPGA基本单元
可编程逻辑块
可编程IO块
可编程内部互联
PLL、DLL
块RAM存储器
数学运算单元
高速串行I/O
PCIE、DDR等硬核控制器
嵌入式处理器硬核()
01.科学FPGA开发流程
- 设计定义
- 设计输入
- 分析和综合(Quartus初学)
- 功能仿真(modelsim-altera)
- 设计约束
- 布局布线
- 时序仿真(modelsim-altera)
- IO分配以及配置文件的生成
- 配置(烧结FPGA)
- 在线调试(…)
设计定义:
二选一多路器
两个输入IO,可以是高电平,也可以是低电平,
输入按键按下时,LED灯与a端口保持一致。
输入按键释放时,LED灯与b端口状态保持一致。
led_test.v
module led_test(a,b,key_in,led_out);input a;//输入端口Ainput b;//输入端口Binput key_in;//按键输入,实现输入通道的选择output led_out;//led控制端口//当key——in == 0;led_out = a;assign led_out = (key_in == 0) ? a : b;
endmodule
led_test_tb.v
`timescale 1ns/1ps
module led_test_tb;//激励信号定义,对应连接到待测模块的输入端口reg signal_a;reg signal_b;reg signal_c;//待检测信号定义,对应连接到待测模块的输出端口wire led;//例化待测试模块led_test led_test0(.a(signal_a),.b(signal_b),.key_in(signal_c),.led_out(led));//产生激励initial beginsignal_a = 0;signal_b = 0;signal_c = 0;#100//延时100nssignal_a = 0;signal_b = 0;signal_c = 1;#100signal_a = 0;signal_b = 1;signal_c = 0;#100signal_a = 0;signal_b = 1;signal_c = 1;#100signal_a = 1;signal_b = 0;signal_c = 0;#100signal_a = 1;signal_b = 0;signal_c = 1;#100signal_a = 1;signal_b = 1;signal_c = 0;#100signal_a = 1;signal_b = 1;signal_c = 1;#200$stop;end
endmodule
功能仿真(前仿真)——RTL Simulation
门级仿真(时序仿真、后仿真)——Gate Level Simulation
管脚分配pin planner
02.3-8译码器设计与验证
A | B | C | out |
---|---|---|---|
0 | 0 | 0 | 0000_0001 |
0 | 0 | 1 | 0000_0010 |
0 | 1 | 0 | 0000_0100 |
0 | 1 | 1 | 0000_1000 |
1 | 0 | 0 | 0001_0000 |
1 | 0 | 1 | 0010_0000 |
1 | 1 | 0 | 0100_0000 |
1 | 1 | 1 | 1000_0000 |
my3_8.v
module my3_8(a,b,c,out);input a;//输入端口Ainput b;//输入端口Binput c;//输入端口Coutput [7:0] out;//输出端口reg [7:0] out;//always块中生成的必须用reg型always@(a,b,c)begincase({a,b,c})3'b000:out = 8'b0000_0001;3'b001:out = 8'b0000_0010;3'b010:out = 8'b0000_0100;3'b011:out = 8'b0000_1000;3'b100:out = 8'b0001_0000;3'b100:out = 8'b0010_0000;3'b110:out = 8'b0100_0000;3'b111:out = 8'b1000_0000;//default: out = 8'b1000_0000;endcaseend
endmodule
my3_8_tb.v
`timescale 1ns/1ps
module my3_8_tb;reg a;reg b;reg c;wire [7:0] out;my3_8 u1(.a(a),.b(b),.c(c),.out(out));initial begina = 0;b = 0;c = 0;#200a = 0;b = 0;c = 1;#200a = 0;b = 1;c = 0;#200a = 0;b = 1;c = 1;#200a = 1;b = 0;c = 0;#200a = 1;b = 0;c = 1;#200a = 1;b = 1;c = 0;#200a = 1;b = 1;c = 1;#200$stop;end
endmodule
功能仿真(前仿真)
门级仿真(时序仿真、后仿真)
02. 4-16译码器(对比3-8译码器练习)
A | B | C | D | out |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0000_0000_0000_0001 |
0 | 0 | 0 | 1 | 0000_0000_0000_0010 |
0 | 0 | 1 | 0 | 0000_0000_0000_0100 |
0 | 0 | 1 | 1 | 0000_0000_0000_1000 |
0 | 1 | 0 | 0 | 0000_0000_0001_0000 |
0 | 1 | 0 | 1 | 0000_0000_0010_0000 |
0 | 1 | 1 | 0 | 0000_0000_0100_0000 |
0 | 1 | 1 | 1 | 0000_0000_1000_0000 |
1 | 0 | 0 | 0 | 0000_0001_0000_0000 |
1 | 0 | 0 | 1 | 0000_0010_0000_0000 |
1 | 0 | 1 | 0 | 0000_0100_0000_0000 |
1 | 0 | 1 | 1 | 0000_1000_0000_0000 |
1 | 1 | 0 | 0 | 0001_0000_0000_0000 |
1 | 1 | 0 | 1 | 0010_0000_0000_0000 |
1 | 1 | 1 | 0 | 0100_0000_0000_0000 |
1 | 1 | 1 | 1 | 1000_0000_0000_0000 |
my4_16.v
module my4_16(a,b,c,d,out);input a;input b;input c;input d;output [15:0]out;reg [15:0]out;always@(a,b,c,d)begincase({a,b,c,d}) 4'b0000 :out = 16'b0000_0000_0000_0001;4'b0001 :out = 16'b0000_0000_0000_0010;4'b0010 :out = 16'b0000_0000_0000_0100;4'b0011 :out = 16'b0000_0000_0000_1000;4'b0100 :out = 16'b0000_0000_0001_0000;4'b0101 :out = 16'b0000_0000_0010_0000;4'b0110 :out = 16'b0000_0000_0100_0000;4'b0111 :out = 16'b0000_0000_1000_0000;4'b1000 :out = 16'b0000_0001_0000_0000;4'b1001 :out = 16'b0000_0010_0000_0000;4'b1010 :out = 16'b0000_0100_0000_0000;4'b1011 :out = 16'b0000_1000_0000_0000;4'b1100 :out = 16'b0001_0000_0000_0000;4'b1101 :out = 16'b0010_0000_0000_0000;4'b1110 :out = 16'b0100_0000_0000_0000;4'b1111 :out = 16'b1000_0000_0000_0000;endcaseend
endmodule
my4_16_tb.v
`timescale 1ns/1psmodule my4_16_tb;reg a;reg b;reg c;reg d;wire [15:0] out;my4_16 my4_16_inst(.a (a ),.b (b ),.c (c ),.d (d ),.out (out));initial begina = 0;b = 0;c = 0;d = 0;#200a = 0;b = 0;c = 0;d = 1;#200a = 0;b = 0;c = 1;d = 0;#200a = 0;b = 0;c = 1;d = 1;#200a = 0;b = 1;c = 0;d = 0;#200a = 0;b = 1;c = 0;d = 1;#200a = 0;b = 1;c = 1;d = 0;#200a = 0;b = 1;c = 1;d = 1;#200a = 1;b = 0;c = 0;d = 0;#200a = 1;b = 0;c = 0;d = 1;#200a = 1;b = 0;c = 1;d = 0;#200a = 1;b = 0;c = 1;d = 1;#200a = 1;b = 0;c = 0;d = 0;#200a = 1;b = 0;c = 0;d = 1;#200a = 1;b = 0;c = 1;d = 0;#200a = 1;b = 0;c = 1;d = 1;#200$stop;end
endmodule
- 在仿真中,任何信号都要赋给初始值
前仿真(功能仿真)
后仿真
- 后仿真和之前一样,也存在延迟和上电的高阻。
语法乱记
模块调用
综合与不可综合
task中只要没有不可综合语句(如延时#),就可以综合!
initial也未必,
时序逻辑:
有时钟和存储能力(reg),计数器是最简单的时序逻辑(时序逻辑中也需要组合逻辑的配合才有意义)。
03.计数器
LED,每500ms,状态翻转一次,
系统时钟为50M,对应周期为20ns
500ms = 500_000_000ns/20 = 25_000_000;
电路原理图
counter.v
module counter(Clk50M,Rst_n,led);input Clk50M;//系统时钟,50Minput Rst_n;//全局复位,低电平复位output reg led;//led输出,always块中的变量都要声明为reg型reg [24:0] cnt;//定义计数器寄存器//计数器计数进程 always@(posedge Clk50M or negedge Rst_n)beginif(Rst_n == 1'b0)cnt <= 25'd0;//else if(cnt == 25'd24_999_999)else if(cnt == 25'd24_999)cnt <= 25'd0;elsecnt <= cnt + 1'b1;end//led输出控制进程always@(posedge Clk50M or negedge Rst_n)beginif(Rst_n == 1'b0)led <= 1'b1;//else if(cnt == 25'd24_999_999) else if(cnt == 25'd24_999)led <= ~led;else led <= led;endendmodule
couter_tb.v
`timescale 1ns/1ps
`define clock_period 20module counter_tb;reg clk;reg rst_n;wire led;counter counter0(.Clk50M(clk),.Rst_n(rst_n),.led(led));initial clk = 1;always #(`clock_period/2) clk = ~clk;initial beginrst_n = 1'b0;#(`clock_period *200);rst_n = 1'b1;#2000000000;$stop;endendmodule
前仿真(功能仿真)
后仿真(时序仿真、门级仿真)
IO管脚分配
04.计数器IP核调用与验证
四位计数器 (Quartus II 提供的LPM_counter IP核的使用)
- FPGA设计方式:
原理图(不推荐)
Verilog HDL设计方式
IP核输入方式
调用步骤
counter.v
`timescale 1 ps / 1 ps
// synopsys translate_on
module counter (cin,clock,cout,q);input cin;input clock;output cout;output [3:0] q;wire sub_wire0;wire [3:0] sub_wire1;wire cout = sub_wire0;wire [3:0] q = sub_wire1[3:0];lpm_counter LPM_COUNTER_component (.cin (cin),.clock (clock),.cout (sub_wire0),.q (sub_wire1),.aclr (1'b0),.aload (1'b0),.aset (1'b0),.clk_en (1'b1),.cnt_en (1'b1),.data ({4{1'b0}}),.eq (),.sclr (1'b0),.sload (1'b0),.sset (1'b0),.updown (1'b1));defparamLPM_COUNTER_component.lpm_direction = "UP",LPM_COUNTER_component.lpm_modulus = 10,LPM_COUNTER_component.lpm_port_updown = "PORT_UNUSED",LPM_COUNTER_component.lpm_type = "LPM_COUNTER",LPM_COUNTER_component.lpm_width = 4;endmodule
tb_counter.v
`timescale 1ns/1ns`define clock_period 20module counter_tb;reg cin;//进位输入reg clk;//计数基准时钟wire cout;//进位输出wire [3:0] q;counter counter0(.cin(cin),.clock(clk),.cout(cout),.q(q));initial clk = 1;always #(`clock_period/2) clk = ~clk;initial beginrepeat(5)begincin = 0;#(`clock_period *5) cin = 1;#(`clock_period ) cin = 0;end#(`clock_period *200);$stop; endendmodule
前仿真(功能仿真)
- 把counter_tb.v中的repeat(5)改为repeat(10),出现如下的仿真结果:(记得选无符号显示)
- 这个IP核的这个学习小节中,我们开始设置了计数到10,其实我们还可以计数到满(四位计数到4’b1111),下面将重新配置
- 这里的功能仿真如下:
八位计数器(四位计数器拼接升级)
前面的例码,说的是4位的,如果说要8位的,该怎么办?
一种是:在设计代码中,将位宽设置为8位的;还有一种就是将两个四位的拼接,原理图如下:
功能仿真
05. BCD计数器设计与使用
158
158/100 = 1
158%100 = 5
58/10 = 5
158%10 = 8
BCD计数器基本模块
BCD_counter.v
module BCD_counter(Clk, Cin, Rst_n, Cout, q );input Clk;//计数基准时钟input Cin;//计数器进位输入input Rst_n;//系统复位output reg Cout;//计数器进位输出output [3:0] q;//计数器输出reg [3:0] cnt;//定义计数器寄存器//执行计数过程always@(posedge Clk or negedge Rst_n)if(Rst_n == 1'b0)cnt <= 4'd0;else if(Cin == 1'b1) beginif(cnt == 4'd9)cnt <= 4'd0;else cnt <= cnt + 4'd1;endelsecnt <= cnt;//产生进位输出信号 always@(posedge Clk or negedge Rst_n)if(Rst_n == 1'b0)Cout = 1'b0;else if(Cin == 1'b1 && cnt == 4'd9 ) Cout <= 1'b1;else Cout <= 1'b0;assign q = cnt;endmodule
BCD_counter_tb.v
`timescale 1ns/1ns
`define clock_period 20
module BCD_counter_tb;reg clk;reg cin;reg rst_n;wire cout;wire [3:0]q;BCD_counter BCD_counter_inst(.Clk(clk),.Cin(cin), .Rst_n(rst_n), .Cout(cout),.q(q) );initial clk = 1'b1;always #(`clock_period/2) clk = ~clk;initial beginrst_n = 1'b0;cin = 1'b0;#(`clock_period *200);rst_n = 1'b1;#(`clock_period *20);repeat(30)begincin = 1'b1;#`clock_period;cin = 1'b0;#(`clock_period *5);end#(`clock_period *20);$stop;endendmodule
功能仿真
BCD计数器综合(由模块组成top)
按照上节课的套路,这次按照12位输出,也就是需要例化三次counter
BCD_counter_top.v
module BCD_counter_top(Clk, Cin, Rst_n, Cout, q );input Clk;//计数基准时钟input Cin;//计数器进位输入input Rst_n;//系统复位output Cout;//计数器进位输出output [11:0] q;//计数器输出wire Cout1;wire Cout2;wire [3:0] q0,q1,q2;assign q = {q2,q1,q0};BCD_counter BCD_counter_inst0(.Clk(Clk),.Cin(Cin), .Rst_n(Rst_n), .Cout(Cout1),.q(q0) );BCD_counter BCD_counter_inst1(.Clk(Clk),.Cin(Cout1), .Rst_n(Rst_n), .Cout(Cout2),.q(q1) );BCD_counter BCD_counter_inst2(.Clk(Clk),.Cin(Cout2), .Rst_n(Rst_n), .Cout(Cout),.q(q2) );endmodule
BCD_counter_top_tb.v
`timescale 1ns/1ns
`define clock_period 20
module BCD_counter_top_tb;reg clk;reg cin;reg rst_n;wire cout;wire [11:0]q;BCD_counter_top BCD_counter_top_inst(.Clk(clk),.Cin(cin), .Rst_n(rst_n), .Cout(cout),.q(q) );initial clk = 1'b1;always #(`clock_period/2) clk = ~clk;initial beginrst_n = 1'b0;cin = 1'b0;#(`clock_period *200);rst_n = 1'b1;#(`clock_period *20);cin = 1'b1;#(`clock_period *5000);$stop;endendmodule
功能仿真(发现错误)
修改后的BCD_counter.v
module BCD_counter(Clk, Cin, Rst_n, Cout, q );input Clk;//计数基准时钟input Cin;//计数器进位输入input Rst_n;//系统复位output Cout;//计数器进位输出output [3:0] q;//计数器输出reg [3:0] cnt;//定义计数器寄存器//执行计数过程always@(posedge Clk or negedge Rst_n)if(Rst_n == 1'b0)cnt <= 4'd0;else if(Cin == 1'b1) beginif(cnt == 4'd9)cnt <= 4'd0;else cnt <= cnt + 1'b1;endelsecnt <= cnt;//产生进位输出信号 assign Cout = (Cin == 1'b1 && cnt == 4'd9 ); assign q = cnt;endmodule
修改后的功能仿真
07.阻塞赋值与非阻塞赋值
这节课,为了讲述阻塞与非阻塞,感受一下非阻塞与阻塞之间的区别,
将 out <= a+b+c 设计拆分为:
d <= a+b;
out <= c+d;
当然,实际过程中,就是直接用out = a+b+c即可,不用再引入寄存器增加延迟。
block_nonblock.v(第一种)
module block_nonblock(Clk,Rst_n,a,b,c,out);input Clk;input Rst_n;input a;input b;input c;output reg [1:0] out;//out = a + b + c;//d = a + b;//out = d + c;reg [1:0]d;always@(posedge Clk or negedge Rst_n)if(!Rst_n)out = 2'b0;else begind = a + b;out = d + c;endendmodule
综合之后的电路原理图
block_nonblock.v(第二种)
module block_nonblock(Clk,Rst_n,a,b,c,out);input Clk;input Rst_n;input a;input b;input c;output reg [1:0] out;//out = a + b + c;//d = a + b;//out = d + c;reg [1:0]d;always@(posedge Clk or negedge Rst_n)if(!Rst_n)out = 2'b0;else beginout = d + c;d = a + b;endendmodule
综合之后的电路原理图(第二种)
block_nonblock.v(第三种)
module block_nonblock(Clk,Rst_n,a,b,c,out);input Clk;input Rst_n;input a;input b;input c;output reg [1:0] out;//out = a + b + c;//d = a + b;//out = d + c;reg [1:0]d;always@(posedge Clk or negedge Rst_n)if(!Rst_n)out <= 2'b0;else beginout <= d + c;d <= a + b;endendmodule
综合之后的电路原理图(第三种)
block_nonblock.v(第四种)
module block_nonblock(Clk,Rst_n,a,b,c,out);input Clk;input Rst_n;input a;input b;input c;output reg [1:0] out;//out = a + b + c;//d = a + b;//out = d + c;reg [1:0]d;always@(posedge Clk or negedge Rst_n)if(!Rst_n)out <= 2'b0;else begind <= a + b;out <= d + c;endendmodule
综合之后的电路原理图(第四种)
测试平台block_nonblock_tb.v
`timescale 1ns/1ns
`define clock_period 20module block_nonblock_tb;reg Clock;reg Rst_n;reg a,b,c;wire [1:0]out;block_nonblock block_nonblock0(Clock,Rst_n,a,b,c,out);initial Clock = 1'b1;always #(`clock_period/2) Clock = ~Clock;initial beginRst_n = 1'b0;a = 0;b = 0;c = 0;#(`clock_period*200 +1);#(`clock_period*200);Rst_n = 1'b1;a = 0;b = 0;c = 0;#(`clock_period*200);a = 0;b = 0;c = 1;#(`clock_period*200);a = 0;b = 1;c = 0;#(`clock_period*200);a = 0;b = 1;c = 1;#(`clock_period*200);a = 1;b = 0;c = 0;#(`clock_period*200);a = 1;b = 0;c = 1;#(`clock_period*200);a = 1;b = 1;c = 0;#(`clock_period*200);a = 1;b = 1;c = 1;#(`clock_period*200);$stop;end
endmodule
第四种的功能仿真
block_nonblock.v(在第四种的基础上添加了延迟)
`timescale 1ns/1ns
`define tp 1
module block_nonblock(Clk,Rst_n,a,b,c,out);input Clk;input Rst_n;input a;input b;input c;output reg [1:0] out;//out = a + b + c;//d = a + b;//out = d + c;reg [1:0]d;always@(posedge Clk or negedge Rst_n)if(!Rst_n)out <= #`tp 2'b0;else begind <= #`tp a + b;out <= #`tp d + c;endendmodule
对应的功能仿真
后仿真(这里去掉延迟,用第四种设计代码)
不推荐使用阻塞赋值的原因如下:
08.状态机的设计思想
(工作日,闹钟响起)
- 06:00~09:00 |(起床后的整理以及工作前的准备)
询问是否需要上班——是(工作),不是(其他) - 09:00~18:00|(工作)
是否需要加班——需要加班(工作),不需要工作(回家) - 18:00~22:00|(下班回家、做饭、吃饭)
是否需要休息——是(休息),不是(其他) - 22:00~06:00|(睡觉)
序列检测的一个例子
Hello.v
module Hello(Clk,Rst_n,data,led);input Clk;//50Minput Rst_n;//input [7:0]data;output reg led;localparam CHECk_H = 5'b0_0001,CHECk_e = 5'b0_0010,CHECk_la = 5'b0_0100,CHECk_lb = 5'b0_1000,CHECk_o = 5'b1_0000;reg [4:0] state;//一段式状态机、两段式状态机、三段式状态机always@(posedge Clk or negedge Rst_n)if(!Rst_n)beginled <= 1'b1;state <= CHECk_H;endelse begincase(state)CHECk_H:if(data == "H")//这是可综合的state <= CHECk_e;elsestate <= CHECk_H;CHECk_e:if(data == "e")state <= CHECk_la;elsestate <= CHECk_H;CHECk_la:if(data == "l")state <= CHECk_lb;else state <= CHECk_H;CHECk_lb:if(data == "l")state <= CHECk_o;elsestate <= CHECk_H;CHECk_o:beginstate <= CHECk_H;if(data == "o")led <= ~led;else led <=led; enddefault:state <= CHECk_H;endcase end
endmodule
Hello_tb.v
`timescale 1ns/1ns
`define clock_period 20
module Hello_tb;reg Clk;reg Rst_n;reg [7:0]ASCII;wire led;Hello Hello(.Clk(Clk),.Rst_n(Rst_n),.data(ASCII),.led(led));initial Clk = 1'b1;always #(`clock_period/2) Clk = ~Clk;initial beginRst_n = 1'b0;#(`clock_period*200);Rst_n = 1;#(`clock_period*200);forever beginASCII = "I";#(`clock_period);ASCII = "A";#(`clock_period);ASCII = "M";#(`clock_period);ASCII = "X";#(`clock_period);ASCII = "i";#(`clock_period);ASCII = "a";#(`clock_period);ASCII = "o";#(`clock_period);ASCII = "M";#(`clock_period);ASCII = "e";#(`clock_period);ASCII = "i";#(`clock_period);ASCII = "g";#(`clock_period);ASCII = "e";#(`clock_period);ASCII = "H";#(`clock_period);ASCII = "E";#(`clock_period);ASCII = "M";#(`clock_period);ASCII = "l";#(`clock_period);ASCII = "H";#(`clock_period);ASCII = "E";#(`clock_period);ASCII = "L";#(`clock_period);ASCII = "L";#(`clock_period);ASCII = "O";#(`clock_period);ASCII = "H";#(`clock_period);ASCII = "e";#(`clock_period);ASCII = "l";#(`clock_period);ASCII = "l";#(`clock_period);ASCII = "o";#(`clock_period);ASCII = "l";endend
endmodule
功能仿真
门级仿真
- 对比功能仿真,发现led状态并没有发生立即的翻转,而是在采集到的时钟沿后面一段时间才翻转,这是符合真实电路的。因此建议在功能仿真时,建议在testbench中加上一定的延时,和后仿真贴近。在tb中修改成如下的格式:
Rst_n = 1;
#(`clock_period*200 + 1);
添加延迟后的功能仿真
09.A按键消抖模式设计与验证
独立按键消抖实验
课程目标:复习状态机的设计思想
实验平台:Snow Dream starter board 核心板
实验现象:每次按下键0,4个LED显示状态以二进制加法格式加1,每次按下按键1,4个LED显示状态以二进制加法格式减1
知识点:
- testbench 中随机数发生函数$random的使用;
- 仿真模型的概念;
未按下时空闲状态(IDLE)
按下抖动滤除状态(FILTER)
按下稳定状态(DOWN)
释放抖动滤除状态(FILTER)
消抖模型
边缘检测
key_filter.v
module key_filter(Clk,Rst_n,key_in,key_flag,key_state);input Clk;input Rst_n;input key_in;output reg key_flag;output reg key_state;localparamIDLE = 4'b0001,FILTER0 = 4'b0010,DOWN = 4'b0100,FILTER1 = 4'b1000;reg [3:0] state;reg [19:0] cnt;reg en_cnt;//使能计数寄存器//50_000_000 20ns//20ms=20_000_000ns ,则需要计数1_000_000即为20msreg key_tmp0,key_tmp1;wire pedge,nedge;reg cnt_full;//计数满表示信号always@(posedge Clk or negedge Rst_n)if(!Rst_n)beginkey_tmp0 <= 1'b0;key_tmp1 <= 1'b0;endelse beginkey_tmp0 <= key_in;key_tmp1 <= key_tmp0;endassign nedge = !key_tmp0 & key_tmp1;assign pedge = key_tmp0 &(!key_tmp1);//assign pedge = key_tmp0 &(~key_tmp1);//~0110 = 1001//!0110 = 0000always@(posedge Clk or negedge Rst_n)if(!Rst_n)beginen_cnt <= 1'b0;state <= IDLE;key_flag <=1'b0;key_state <= 1'b1;endelse begincase(state)IDLE:beginkey_flag <= 1'b0;if(nedge)beginstate <= FILTER0;en_cnt <= 1'b1;endelse state <= IDLE;endFILTER0:beginif(cnt_full)beginkey_flag <=1'b1;key_state <= 1'b0;state <= DOWN;en_cnt <= 1'b0;endelse if(pedge)beginstate <= IDLE;en_cnt <= 1'b0;endelse state <= FILTER0;endDOWN:beginkey_flag <= 1'b0;if(pedge)beginstate <= FILTER1;en_cnt <= 1'b1;endelsestate <= DOWN;endFILTER1:beginif(cnt_full)beginkey_flag <=1'b1;key_state <= 1'b1;state <= IDLE;endelse if(nedge)beginen_cnt <= 1'b0;state <= DOWN;endelsestate <= FILTER1;end default:beginstate <= IDLE;en_cnt <= 1'b0;key_flag <= 1'b0;key_state <= 1'b1;endendcaseendalways@(posedge Clk or negedge Rst_n)if(!Rst_n)cnt <= 20'd0;else if (en_cnt)cnt <= cnt + 1'b1;else cnt <= 20'd0;always@(posedge Clk or negedge Rst_n)if(!Rst_n)cnt_full <= 1'b0;else if (cnt == 999_999)cnt_full <= 1'b1;else cnt_full <= 1'b0;
endmodule
综合之后得到的状态图
key_filter_tb.v
`timescale 1ns/1ns
`define clk_period 20module key_filter_tb;reg Clk;reg Rst_n;reg key_in;wire key_flag;wire key_state;key_filter key_filter0(.Clk(Clk),.Rst_n(Rst_n),.key_in(key_in),.key_flag(key_flag),.key_state(key_state));initial Clk = 1'b1;always #(`clk_period/2) Clk = ~Clk;initial beginRst_n = 1'b0;key_in = 1'b1;#(`clk_period *10) Rst_n = 1'b1;#(`clk_period *10 +1);//第一次key_in = 0; #1000;key_in = 1; #2000;key_in = 0; #1400;key_in = 1; #2600;key_in = 0; #1300;key_in = 1; #200;key_in = 0; #20000100;#50000100;key_in = 1; #2000;key_in = 0; #1000;key_in = 1; #2000;key_in = 0; #1400;key_in = 1; #2600;key_in = 0; #1300;key_in = 1; #20000100;#50000100;//第二次key_in = 0; #1000;key_in = 1; #2000;key_in = 0; #1400;key_in = 1; #2600;key_in = 0; #1300;key_in = 1; #200;key_in = 0; #20000100;#50000100;key_in = 1; #2000;key_in = 0; #1000;key_in = 1; #2000;key_in = 0; #1400;key_in = 1; #2600;key_in = 0; #1300;key_in = 1; #20000100;#50000100;//第三次key_in = 0; #1000;key_in = 1; #2000;key_in = 0; #1400;key_in = 1; #2600;key_in = 0; #1300;key_in = 1; #200;key_in = 0; #20000100;#50000100;key_in = 1; #2000;key_in = 0; #1000;key_in = 1; #2000;key_in = 0; #1400;key_in = 1; #2600;key_in = 0; #1300;key_in = 1; #20000100;#50000100;//第四次key_in = 0; #1000;key_in = 1; #2000;key_in = 0; #1400;key_in = 1; #2600;key_in = 0; #1300;key_in = 1; #200;key_in = 0; #20000100;#50000100;key_in = 1; #2000;key_in = 0; #1000;key_in = 1; #2000;key_in = 0; #1400;key_in = 1; #2600;key_in = 0; #1300;key_in = 1; #20000100;#50000100; $stop;end
endmodule
功能仿真
- 向上的箭头:按下抖动
- 向下的箭头:释放抖动
通过$random简化测试平台
随机数发生函数
`timescale 1ns/1ns
`define clk_period 20module key_filter_tb;reg Clk;reg Rst_n;reg key_in;wire key_flag;wire key_state;key_filter key_filter0(.Clk(Clk),.Rst_n(Rst_n),.key_in(key_in),.key_flag(key_flag),.key_state(key_state));initial Clk = 1'b1;always #(`clk_period/2) Clk = ~Clk;initial beginRst_n = 1'b0;key_in = 1'b1;#(`clk_period *10) Rst_n = 1'b1;#(`clk_period *10 +1);press_key;#10000;press_key;#10000;press_key;$stop;endreg [15:0] myrand;task press_key;begin//按下抖动过程repeat(50)beginmyrand = {$random}%65536;//0-65535;#myrand key_in = ~key_in;endkey_in = 0;#50000000;//释放抖动过程repeat(50)beginmyrand = {$random}%65536;//0-65535;#myrand key_in = ~key_in;endkey_in = 1;#50000000;endendtaskendmodule
功能仿真(随机函数是起作用的)
仿真模型
key_model.v
`timescale 1ns/1nsmodule key_model(key);output reg key;reg [15:0] myrand;initial beginkey = 1'b1;press_key;#10000;press_key;#10000;press_key;$stop;endtask press_key;begin//按下抖动过程repeat(50)beginmyrand = {$random}%65536;//0-65535;#myrand key = ~key;endkey = 0;#50000000;//释放抖动过程repeat(50)beginmyrand = {$random}%65536;//0-65535;#myrand key = ~key;endkey = 1;#50000000;endendtaskendmodule
key_filter_tb.v
`timescale 1ns/1ns`define clk_period 20module key_filter_tb;reg Clk;reg Rst_n;wire key_in;wire key_flag;wire key_state;key_filter key_filter0(.Clk(Clk),.Rst_n(Rst_n),.key_in(key_in),.key_flag(key_flag),.key_state(key_state));key_model key_model1(.key(key_in));initial Clk = 1'b1;always #(`clk_period/2) Clk = ~Clk;initial beginRst_n = 1'b0;#(`clk_period *10) Rst_n = 1'b1;#(`clk_period *10 +1);end
endmodule
09.B按键消抖与亚稳态问题引入
- 异步信号:它与系统没有关系的,由外部产生的
- 模块化思想
- 异步信号的同步,使用两级D触发器进行同步
key_led_top.v
module key_led_top(Clk,Rst_n,key_in0,key_in1,led);input Clk;input Rst_n;input key_in0;input key_in1;output [3:0] led;wire key_flag0,key_flag1;wire key_state0,key_state1;key_filter key_filter0(.Clk(Clk),.Rst_n(Rst_n),.key_in(key_in0),.key_flag(key_flag0),.key_state(key_state0));key_filter key_filter1(.Clk(Clk),.Rst_n(Rst_n),.key_in(key_in1),.key_flag(key_flag1),.key_state(key_state1));led_ctrl led_ctrl0(.Clk(Clk),.Rst_n(Rst_n),.key_flag0(key_flag0),.key_flag1(key_flag1),.key_state0(key_state0),.key_state1(key_state1),.led(led));
endmodule
key_filter.v
module key_filter(Clk,Rst_n,key_in,key_flag,key_state);input Clk;input Rst_n;input key_in;output reg key_flag;output reg key_state;localparamIDLE = 4'b0001,FILTER0 = 4'b0010,DOWN = 4'b0100,FILTER1 = 4'b1000;reg [3:0] state;reg [19:0] cnt;reg en_cnt;//使能计数寄存器//50_000_000 20ns//20ms=20_000_000ns ,则需要计数1_000_000即为20ms//对外部输入的异步信号进行同步处理reg key_in_s0,key_in_s1;always@(posedge Clk or negedge Rst_n)if(!Rst_n)beginkey_in_s0 <= 1'b0;key_in_s1 <= 1'b0;endelse beginkey_in_s0 <= key_in;key_in_s1 <= key_in_s0;endreg key_tmp0,key_tmp1;wire pedge,nedge;reg cnt_full;//计数满表示信号//使用D触发器存储两个相邻时钟上升沿外部输入信号(已经同步到系统时钟域中)的电平状态always@(posedge Clk or negedge Rst_n)if(!Rst_n)beginkey_tmp0 <= 1'b0;key_tmp1 <= 1'b0;endelse beginkey_tmp0 <= key_in_s1;key_tmp1 <= key_tmp0;end//产生跳变沿信号 assign nedge = !key_tmp0 & key_tmp1;assign pedge = key_tmp0 &(!key_tmp1);//assign pedge = key_tmp0 &(~key_tmp1);//~0110 = 1001//!0110 = 0000always@(posedge Clk or negedge Rst_n)if(!Rst_n)beginen_cnt <= 1'b0;state <= IDLE;key_flag <=1'b0;key_state <= 1'b1;endelse begincase(state)IDLE:beginkey_flag <= 1'b0;if(nedge)beginstate <= FILTER0;en_cnt <= 1'b1;endelse state <= IDLE;endFILTER0:beginif(cnt_full)beginkey_flag <=1'b1;key_state <= 1'b0;state <= DOWN;en_cnt <= 1'b0;endelse if(pedge)beginstate <= IDLE;en_cnt <= 1'b0;endelse state <= FILTER0;endDOWN:beginkey_flag <= 1'b0;if(pedge)beginstate <= FILTER1;en_cnt <= 1'b1;endelsestate <= DOWN;endFILTER1:beginif(cnt_full)beginkey_flag <=1'b1;key_state <= 1'b1;state <= IDLE;endelse if(nedge)beginen_cnt <= 1'b0;state <= DOWN;endelsestate <= FILTER1;end default:beginstate <= IDLE;en_cnt <= 1'b0;key_flag <= 1'b0;key_state <= 1'b1;endendcaseendalways@(posedge Clk or negedge Rst_n)if(!Rst_n)cnt <= 20'd0;else if (en_cnt)cnt <= cnt + 1'b1;else cnt <= 20'd0;always@(posedge Clk or negedge Rst_n)if(!Rst_n)cnt_full <= 1'b0;else if (cnt == 999_999)cnt_full <= 1'b1;else cnt_full <= 1'b0;
endmodule
led_ctrl.v
module led_ctrl(Clk,Rst_n,key_flag0,key_flag1,key_state0,key_state1,led);input Clk;input Rst_n;input key_flag0,key_flag1;input key_state0,key_state1;output [3:0] led;reg [3:0] led_r;always@(posedge Clk or negedge Rst_n)if(!Rst_n)led_r <= 4'b0000;else if(key_flag0 && !key_state0)led_r <= led_r + 1'b1;else if(key_flag1 && !key_state1)led_r <= led_r - 1'b1;else led_r <= led_r;assign led = ~led_r;
endmodule
key_led_top_tb.v
`timescale 1ns/1ns`define clk_period 20
module key_led_top_tb;reg Clk;reg Rst_n;wire key_in0,key_in1;reg press0,press1;wire [3:0] led;key_led_top key_led_top0(.Clk(Clk),.Rst_n(Rst_n),.key_in0(key_in0),.key_in1(key_in1),.led(led));key_model key_model0(.press(press0),.key(key_in0));key_model key_model1(.press(press1),.key(key_in1));initial Clk = 1'b1;always #(`clk_period/2) Clk = ~Clk;initial beginRst_n = 1'b0;press0 = 0;press1 = 0;#(`clk_period *10) Rst_n = 1'b1;#(`clk_period *10 +1);press0 = 1;#(`clk_period *3) press0 = 0;#80_000_000press0 = 1;#(`clk_period *3) press0 = 0;#80_000_000press0 = 1;#(`clk_period *3) press0 = 0;#80_000_000press1 = 1;#(`clk_period *3) press1 = 0;#80_000_000press1 = 1;#(`clk_period *3) press1 = 0;$stop;end
endmodule
key_model.v
`timescale 1ns/1nsmodule key_model(press,key);input press;output reg key;reg [15:0] myrand;initial beginkey = 1'b1;
// press_key;
// #10000;
// press_key;
// #10000;
// press_key;
// $stop;endalways@(posedge press)press_key;task press_key;begin//按下抖动过程repeat(50)beginmyrand = {$random}%65536;//0-65535;#myrand key = ~key;endkey = 0;#25000000;//释放抖动过程repeat(50)beginmyrand = {$random}%65536;//0-65535;#myrand key = ~key;endkey = 1;#25000000;endendtask
endmodule
功能仿真
10.A数码管动态扫描设计与验证
8位7段数码管驱动实验
课程目标:FPGA驱动数码管显示实验
实验平台:Snow Dream starter board 核心板 + 数码管_VGA_PS2学生模块
实验现象:在Quartus II 中,使用In system sources andprobes editor工具,输入需要显示在数码管上的数据,则数码管显示对应数值。
知识点:
- 数码管动态扫描实现
- In system sources and probes editor(ISSP)调试工具的使用。
a. 4输入查找表,8位输出
b. 分频模块,从系统时钟分频得到1KHz的扫描时钟
c. 8选1多路器,选择端为当前扫描的数码管位置
d. 8位循环移位寄存器,1000_0000 ->0000_0001
由于代码加长,之后的代码都不附上
恰好可以不看参考代码,自己从头写一下代码,这样才有长进
HEX8.v
设计代码
HEX8_tb.v
测试平台
HEX_top.v和ISSP.v
板级验证的文件
10.B串行移位寄存器原理与结构分析
10.C串行移位寄存器驱动数码管显示设计与实现
11.A串口发送模块与验证
-
实验平台:芯航线FPGA学习套件核心板、PC机
-
实验现象:在 Quartus II中,使用 In system sources and probes editor工具,输入需要通过串口发送出去的数据,然后按下学习板上的按键O,则FPGA自动将所需要发送的数据发送出去
-
知识点:
-
1.UART通信协议实现
-
2.In system sources and probes editor(ISSP)调试工具的使用
11.B例解使用串口发送多个字节的数据方案
通过串口发送模块发送“HELLO”字符串。