如果原子99.9…96%的体积都是空的,那可不可以将原子缩小呢?

答案是可以,实际上把原子缩小的历程就是恒星演化的历史,按着缩小程度的不同对应着不同质量恒星的演化。


按照标准模型,原子确实是空的,原子核只占很少的一点地方,大概是原子体积的两千亿分之一,这已被卢瑟福α粒子轰击金箔试验所证实。质子和中子在克服库仑斥力的强大核力作用下紧紧抱在一起。原子核密度很高,每立方米有10的14次方吨,质量占原子的99.96%,根据玻尔原子模型,核外电子排布在原子核周围广大空间的特定轨道,电子处在一系列分立的稳态上,即轨道量子化,尽管质子和电子之间有正负电荷的库仑力,但根本不足以抵抗泡利不相容原理产生的斥力(电子简并压),电子不会落到原子核上,但是随着天体物理学的发展和天文观测水平的提高,人们发现了大量的白矮星(就是人们常说的钻石星)。

白矮星的钻石核心

它们密度很大,每立方米有10的7次方吨,远远大于普通物质的密度(每立方米22.57吨以下),这说明原子已被大大的压缩了,但还没有达到每立方米10的14次方吨的原子核密度,这说明原子中的电子已脱离轨道成为自由电子,这种自由电子气体将尽可能地占据原子核之间的空隙,从而使单位空间包含约物质大大增多,密度大大提高了,相当于压缩了原子。形象点说,这时的原子核是“沉浸在”电子之中,但电子还并没有进入原子核。

1928年印度裔美籍科学家钱德拉塞卡计算出白矮星的上限为1.44个太阳质量,超出这个上限,恒星自身的引力将大于电子简并压(此时恒星热核反应的燃料耗尽)而把电子压进原子核中的质子,使质子变成中子,压缩掉原子的剩余空间,整个恒星变成完全有中子紧密组成的中子星,密度大得惊人,达到每立方米为10的14次方吨到15次方吨,此密度也就是原子核的密度。

地球如果被压缩成中子星,直径会变为22米。至此原子意义上已经不存在了。原子的空间被全部压缩掉。恒星收缩为中子星后会因为角动量守恒导致自身高速旋转并发出脉冲信号,因此中子星又叫脉冲星,由于它具有稳定的频率和亮度,科学家常常用它来导航和测距,中子星成为宇宙间的“灯塔”。

当然中子还可以压缩,因为中子还不是基本粒子,1936年原子弹之父美国物理学家奥本海默发现中子星的上限为3.2个太阳质量,超出这个上限,恒星的引力大于中子简并压而继续收缩,最终有两种归宿,一种是经过无限坍缩形成我们熟悉的黑洞,变成一个密度无限大、时空曲率无限高即体积无限小的“奇点”,至此原子被真正缩小没了;

另一种归宿是形成介于中子星和黑洞之间的所谓“夸克星”,这是近年来人们提出的理论上的星体。

至此,我的完毕,欢迎评论。

岂止是可以,简直是太可以了,宇宙中无时无刻不在发生这样的事情。

我们知道,原子是由致密的原子核和其外围的电子组成的。1909年,著名物理学家卢瑟福用α粒子轰击金箔时,发现大部分粒子都能穿过金箔,只有少部分会被弹回。由于α粒子带正电,遇到带正电的原子核才会弹回,这说明原子核非常小,原子内部原来是空空如也的,电子在很远的轨道上围绕原子核运转,就像太阳和行星一样。当然这种原子的太阳系模型并不准确,不过原子内部空间极其空旷却得到了实验的完美验证。

原子核周围的电子形成电子云,根据泡利不相容原理,两个电子不能占据相同的量子态,这样会产生一种被称为电子简并压力的力量,阻止原子被进一步压缩。小于1.4倍太阳质量的非旋转恒星,在其生命演化的末期,由于内部核聚变停止,无法产生热量来对抗引力的坍缩,原子的电子云外壳会被压碎,电子成为原子核之间的自由电子气体,形成大小为太阳半径0.008到0.02倍的白矮星(地球的半径是太阳的0.009倍),密度惊人。

超过太阳质量1.4倍的恒星,在其生命演化末期,电子简并压力也不足以阻止重力的进一步坍缩,电子就会被压进原子核,和质子结合形成中子,恒星也会变成一颗中子星,半径只有数公里到20公里,密度则更是大得惊人。

演化末期坍缩核心质量超过太阳3.2倍的恒星,连中子之间的简并压力也不足以抵抗重力坍缩了,恒星就无可避免会坍缩成为一颗黑洞。

所以原子不但可以缩小,而且可以缩得很小很小,甚至一不小心就会缩没了(进入黑洞的奇点)。

可以,原子可以被缩小。或者更准确地说,原子可以被压缩。中子星上的原子就在被不断压缩。

原子由质子、电子和中子组成。质子带正电,电子带负电,中子不带电。质子和中子集中在原子的中心区域,组成原子核。电子则以概率密度分布在原子核周围并绕核运动,被统称为电子云。

原子核中的中子相对稳定,但游离在原子核之外的自由中子则会经过β衰变变成一个质子和一个电子。所以,一个中子可以由一个电子、一个质子和一个电子中微子组成。电子简并压力可防止正常物质完全由中子组成,正如泡利不相容原理所表明的那样,电子可以存在于电子云中,但电子却不会占据同一个位置,或者更准确地说法应该是,电子不会处在相同的量子状态。这意味着,当电子的概率密度减小时,即压缩原子时,电子的简并压力会增大,从而阻止物质压缩。

就像这样,中子星将所有的原子紧紧地挤压在一起,每个原子没有任何多余的空间,所以整颗中子星就像一个巨大的中子,这也是中子星这个名字的由来。也正因为中子星在有限的空间里包裹进了尽可能多的物质,所以每颗中子星的质量都很大。但由于电子简并压力的存在,中子星不会发生进一步的坍缩。但是,如果中子星的质量不断增加,超过了奥本海默-沃尔科夫极限,那中子星就会最终坍缩成一个黑洞。

答:当然是可以的,甚至在“原子核”中都是非常空旷的,一样可以被压缩,但需要非常高的压力才行。

对于一个原子,原子核直径只有整个原子直径的百万分之一,电子和原子核之间是空的。

原子核带正电荷,电子带负电,量子力学使得两者不能彼此接近,电子的排列规律,遵循着量子力学中的泡利不相容原理。

那么我们有办法,压缩电子和原子核之间的间隙吗?

答案是肯定的!

目前唯一的方式就是通过引力,引力是四种相互作用中最弱的,但是引力有个特点,就是不限距离和质量,只要有足够的质量,就能产生足够强的力。

当一颗超过8倍太阳质量的恒星,在末期的时候,因为核聚变减弱,使得核聚变产生的力量无法抵抗引力的力量,于是发生超新星爆炸。

这时候,恒星内核的原子将被瞬间压碎,电子坠入原子核与质子中和,变为中子;被压碎的原子只剩下原子核,而且是只有中子的原子核。


这些被挤到一起的中子,组成了中子星,这时候泡利不相容原理阻止了中子继续塌缩,中子简并压力对抗着强大的引力。

如果恒星质量更大,那么在超新星爆炸时,中子简并压力也将无法抗衡引力,原子被压碎后,中子也将继续被压碎,形成夸克星。

当然,如果引力继续再大,那么夸克也将被压碎,形成可怕的黑洞。

好啦!我的答案就到这里,喜欢我们答案的读者朋友,记得点击关注我们——艾伯史密斯!

Published by

风君子

独自遨游何稽首 揭天掀地慰生平

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注