snn脉冲神经网络,脉冲耦合神经网络原理及应用

33559 www.toutiao.com/a 6701844289518830091 /

主要讨论脉冲神经网络的拓扑结构、信息的脉冲序列编码方法、脉冲神经网络的学习算法和演化方法等。

一、脉冲神经网络的拓扑结构和传统的人工神经网络一样,脉冲神经网络也同样分为三个拓扑结构。 前馈型脉冲神经网络(feed-forwardspikingneuralnetwork )、递归型脉冲神经网络(recurrent spiking neural network )、混合式

1. 前馈型脉冲神经网络

在多层前馈脉冲神经网络结构中,网络中的神经元是分层排列的,输入层中每个神经元的脉冲序列表示一个具体问题的输入数据编码,并将其输入到脉冲神经网络的下一层最后一层是输出层,这一层各神经元输出的脉冲序列构成网络的输出。 可以在输入层和输出层之间设置一个或多个隐藏层。

此外,传统的前馈人工神经网络中,两个神经元之间只有一个突触连接,而脉冲神经元网络可以采用多突触连接的网络结构,两个神经元之间有多个突触连接,每个突触具有不同的延迟由于突触的不同延迟,突触前神经元输入的脉冲可以在更长的时间范围内影响突触后神经元的脉冲释放。 突触前神经元传递的多个脉冲根据突触权重的大小产生不同的突触后电位。

2. 递归型脉冲神经网络

递归神经网络与多层前馈神经网络和单层神经网络不同,网络结构中具有反馈环。 也就是说,网络中神经元的输出是以前时间步骤中神经元输出的递归函数。 递归神经网络可以模拟时间序列,执行控制、预测等任务,其反馈机制一方面可以表示更复杂的时变系统; 另一方面,要有效地学习算法的设计及其收敛性分析则更加困难。 传统的人工神经网络两种经典学习算法分别是实时递归学习(real-time recurrent learning )算法和随时间演进的反向传播(backpropagation through time )

递归脉冲神经网络是指网络中具有反馈环的脉冲神经网络,由于其信息代码和反馈机制不同于传统的递归人工神经网络,因此网络的学习算法递归脉冲神经网络可以应用于解决语言建模、手写数字识别、语音识别等许多复杂问题。 递归脉冲神经网络大致分为全局递归脉冲神经网络(fullyrecurrentspikingneuralnetwork ); 另一个是局部脉冲神经网络(locallyrecurrentspikingneuralnetwork )。

3. 混合型脉冲神经网络

混合神经网络包括前馈型结构和递归型结构。

二、信息的脉冲序列编码方法从神经科学的角度来看,第二代人工神经网络是基于“发放频率”的神经元计算方式。 随着研究的深入,神经科学家们指出,生物神经系统不仅利用神经元脉冲的“发放频率”,还利用神经元的脉冲计时来编码信息。 实际上,神经元的脉冲发出频率不能完全捕获脉冲序列中包含的信息。 例如,研究人员发现,初级听觉皮质神经元组可以通过短时间分组相邻脉冲来调整动作电位的相对时间,而不改变每秒释放的脉冲数。 这样,神经元还可以在不改变平均释放频率的情况下提供特定的刺激信号。

具有更可生物解释的脉冲神经网络,利用精确定时的脉冲序列编码神经信息。 由于神经网络内部的信息传递是由脉冲序列完成的,脉冲序列是由离散脉冲时间点组成的时间序列,因此在模拟和计算脉冲神经网络时,需要考虑以下因素:输入数据或神经元受到外界刺激时,确定脉冲序列在神经元之间传递,经过一定的处理后对处理后输出的脉冲序列按特定的解码方法进行解码并给出具体的响应。

针对神经信息的脉冲序列编码问题,借鉴生物神经元的信息编码机制,提出了多种脉冲神经网络的脉冲序列编码方法。 例如,起始脉冲触发时间编码方法、延迟相位编码方法、组编码方法等。

三.脉冲神经网络的学习算法学习是人工智能领域的核心问题,对于SNN来说,研究基于脉冲时间层次的学习方法是通过理论模型验证生物神经系统的信息处理和学习机制所必需的。 希望通过生物学上可解释的方法建立人工神经系统,科学家可以通过神经科学和行为实验达到预期的目的。 大脑中的学习可以理解为突触连接强度随时间的变化过程,这种能力被称为突触可塑性synaptic plasticity。 脉冲神经网络的学习方式主要有无监督学习(unsupervised learning )、监督学习(supervised learning )、强化学习(reinforcement learning )等。

1. 无监督学习算法

无监督学习算法在人与动物的学习中占主导地位人们可以通过观察发现世界的内在

在结构,而不是被告知每一个客观事物的名称。人工神经网络无监督学习算法的设计主要是针对无标签数据集的训练,要求应用无监督学习规则对神经网络中的连接权值或结构进行自适应的调整。也就是说,在没有“教师”信号的监督下,神经网络必须自己从输入数据中发现规律性(如统计特征、相关性或类别等),并通过输出实现分类或决策。一般来说,只有当输入数据集中存在冗余性时,无监督学习才有意义,否则,无监督学习不能很好地发现输入数据中的任何模式或特征,即冗余性提供了知识。

脉冲神经网络的无监督学习算法大多是借鉴传统人工神经网络的无监督学习算法,是在Hebb学习规则不同变体的基础上提出的。神经科学的研究成果表明,生物神经系统中的脉冲序列不仅可引起神经突触的持续变化,并且满足脉冲时间依赖可塑性(spike timing-dependent plasticity,STDP)机制。在决定性时间窗口内,根据突触前神经元和突触后神经元发放的脉冲序列的相对时序关系,应用STDP学习规则可以对突触权值进行无监督方式的调整。

2. 脉冲神经网络的监督学习

脉冲神经网络的监督学习是指对于给定的多个输入脉冲序列和多个目标脉冲序列,寻找脉冲神经网络合适的突触权值矩阵,使神经元的输出脉冲序列与对应的目标脉冲序列尽可能接近,即两者的误差评价函数最小。对于脉冲神经网络来说,神经信息以脉冲序列的形式表示,神经元内部状态变量及误差函数不再满足连续可微的性质,构建有效的脉冲神经网络监督学习算法非常困难,同时也是该领域的一个重要的研究方向。

根据监督学习所采用的基本思想不同,可以将现有的监督学习算法分为三类:

基于梯度下降的监督学习算法的基本思想是利用神经元目标输出与实际输出之间的误差以及误差反向传播过程,得到梯度下降计算结果作为突触权值调整的参考量,最终减小这种误差。基于梯度下降的监督学习算法是一种数学分析方法,在学习规则的推导过程中,要求神经元模型的状态变量必须是有解析的表达式,主要采用固定阈值的线性神经元模型,如脉冲响应模型(spike response model)和Integrate-and-Fire神经元模型等。基于突触可塑性的监督学习算法的基本思想是利用神经元发放脉冲序列的时间相关性所引起的突触可塑性机制,设计神经元突触权值调整的学习规则,这是一种具有生物可解释性的监督学习。基于脉冲序列卷积的监督学习算法通过脉冲序列内积的差异构造脉冲神经网络的监督学习算法,突触权值的调整依赖于特定核函数的卷积计算,可实现脉冲序列时空模式的学习。

3. 脉冲神经网络的强化学习

强化学习是从环境状态到行为映射的学习,以使智能体行为从环境中获得的累积奖赏值最大。基于生物启发的学习机制,人工神经网络强化学习的研究重点在于探索智能体的自适应优化策略,是近年来神经网络和智能控制领域的主要方法之一。强化学习关注的是智能体如何在环境中采取一系列行为,通过强化学习,一个智能体应该知道在什么状态下应该采取什么行为。可以看到,强化学习和监督学习的区别主要在于以下两点:

强化学习是试错学习,由于没有直接的“教师”指导信息,智能体要不断与环境交互,通过试错的方式来获得最佳策略;延迟回报,强化学习的指导信息很少,而且往往是在事后(最后一个状态)才给出的,这就导致了一个问题,即获得正回报或者负回报以后,如何将汇报分配给前面的状态。四、脉冲神经网络的进化方法

进化算法(evolutionary algorithm)是模拟生物进化过程的计算模型,是一类基于自然选择和遗传变异等生物进化机制的全局性概率搜索算法,主要包括遗传算法(genetic algorithm)、进化规划(evolutionary programming)和进化策略(evolutionary strategy)等。虽然这些算法在实现方面具有一些差别,但它们具有一个共同的特点,即都是借助生物进化的思想和原理来解决实际问题的。

将进化算法与脉冲神经网络有机结合起来,研究者开辟了进化脉冲神经网络(evolutionary spiking neural network)的研究领域,以提高对复杂问题的求解能力。进化脉冲神经网络可以作为自适应系统的一种一般性框架,在没有人为干预的情况下系统自适应调整神经元的参数、连接权值、网络结构和学习规则。

Published by

风君子

独自遨游何稽首 揭天掀地慰生平

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注