分布式数据库设计——存储引擎原理

摘要

数据库的一个首要目标是可靠并高效地管理数据,以供人们使用。进而不同的应用可以使用相同的数据库来共享它们的数据。数据库的出现使人们放弃了为每个独立的应用开发数据存储的想法,同时,随着数据库广泛的使用,其处理能力飞速发展,演进出如现代的分布式数据库这般惊人的能力。为了支撑抽象的多种场景。一般的数据库都会采用多模块或多子系统的架构来构建数据库,从而方便数据库项目团队依据现实的场景来组合不同的子模块,进而构造出一众丰富的数据库产品。而存储引擎就是这一众模块中极为重要的一环。

一、存储引擎的定位

这个世界上,没有针对数据库设计的一定之规。每个数据库都是根据它所要解决的问题,并结合其他因素慢慢发展成如今的模样的。所以数据库子模块的分化也没有一个广泛接受的标准,且有些模块之间的边界也是很模糊的。特别是需要优化数据库性能时,原有被设计为独立存在的模块很可能会融合以提高数据库整体性能。

比较典型的分布式数据库的架构和模块组合标准,因为这是大部分分布式数据库的架构模式。

  1. 传输层:它是接受客户端请求的一层。用来处理网络协议。同时,在分布式数据库中,它还承担着节点间互相通信的职责。
  2. 查询层:请求从传输层被发送到查询层。在查询层,协议被进行解析,如 SQL 解析;后进行验证与分析;最后结合访问控制来决定该请求是否要被执行。解析完成后,请求被发送到查询优化器,在这里根据预制的规则,数据分布并结合数据库内部的统计,会生成该请求的执行计划。执行计划一般是树状的,包含一系列相关的操作,用于从数据库中查询到请求希望获取的数据。
  3. 执行层(存储引擎层):执行计划被发送到执行层去运行。执行层一般包含本地运行单元与远程运行单元。根据执行计划,调用不同的单元,而后将结果合并返回到传输层。

细心的你可能会注意到,这里只有查询层,那么数据是怎么写入的?这对于不同的数据库,答案会非常不同。有的数据库会放在传输层,由于协议简单,就不需要额外处理,直接发送到执行层;而有些写入很复杂,会交给查询层进行处理。

以上就是数据库领域中比较常见的模块划分方式。你可能有这样的疑问:那么存储引擎在哪里呢?

执行层本地运行单元其实就是存储引擎。它一般包含如下一些功能:

  1. 事务管理器:用来调度事务并保证数据库的内部一致性(这与模块一中讨论的分布式一致性是不同的);
  2. 锁管理:保证操作共享对象时候的一致性,包括事务、修改数据库参数都会使用到它;
  3. 存储结构:包含各种物理存储层,描述了数据与索引是如何组织在磁盘上的;
  4. 内存结构:主要包含缓存与缓冲管理,数据一般是批量输入磁盘的,写入之前会使用内存去缓存数据;
  5. 提交日志:当数据库崩溃后,可以使用提交日志恢复系统的一致性状态。

以上就是存储引擎比较重要的几个功能,其核心就是提供数据读写功能,故一般设计存储引擎时,会提供对其写入路径与读取路径的描述。

二、内存与磁盘

存储引擎中最重要的部分就是磁盘与内存两个结构。而根据数据在它们之中挑选一种作为主要的存储,数据库可以被分为内存型数据库与磁盘型数据库。由此可见存储引擎的一个功能,就是可以被作为数据库类型划分的依据,可见引擎的重要性。

2.1 内存型存储

内存型存储是把数据主要存储在内存里,其目的很明显,就是加快数据读写性能。分布式数据库一个重要的门类就是内存型数据库,包括 Redis、NuoDB 和 MySQL Cluster 等。当然其缺点也很明显,那就是内存的成本较高,且容量有限。而分布式的架构能有效地扩充该类数据库的容量,这也是内存数据库主要是分布式数据库的原因。

2.2 磁盘型存储

磁盘存储相对传统,它存储主要数据,而内存主要作为缓冲来使写入批量化。磁盘存储的好处是,存储性价比较高,这主要得益于磁盘甚至是磁带的单位存储价格相比内存非常低廉。但是与内存型数据库相比,磁盘型数据库的性能比较低。不过,随着近年 SSD 磁盘的普及,这种趋势得到了有效的改善。

这两种存储引擎的差别还体现在功能实现的难度上。内存型数据库相对简单,因为写入和释放随机的内存空间是相对比较容易的;而磁盘型数据库需要处理诸如数据引用、文件序列化、碎片整理等复杂的操作,实现难度很高。

三、行式存储与列式存储

数据一般是以表格的形式存储在数据库中的,所以所有数据都有行与列的概念。但这只是一个逻辑概念,我们将要介绍的所谓“行式”和“列式”体现的其实是物理概念。

3.1 行式存储

行式存储会把每行的所有列存储在一起,从而形成数据文件。当需要把整行数据读取出来时,这种数据组织形式是比较合理且高效的。但是如果要读取多行中的某个列,这种模式的代价就很昂贵了,因为一些不需要的数据也会被读取出来。

3.2 列式存储

而列式存储与之相反,不同行的同一列数据会被就近存储在一个数据文件中。同时除了存储数据本身外,还需要存储该数据属于哪行。而行式存储由于列的顺序是固定的,不需要存储额外的信息来关联列与值之间的关系。

列式存储非常适合处理分析聚合类型的任务,如计算数据趋势、平均值,等等。因为这些数据一般需要加载一列的所有行,而不关心的列数据不会被读取,从而获得了更高的性能。

我们会发现 OLTP 数据库倾向于使用行式存储,而 OLAP 数据库更倾向于列式存储,正是这两种存储的物理特性导致了这种倾向性。而 HATP 数据库也是融合了两种存储模式的一种产物。

当然这里我们要区分 HBase 和 BigTable 所说的宽列存储与列存储在本质上是不同的。宽列存储放在其中的数据的列首先被聚合到了列簇上,列簇被放在不同的文件中;而列簇中的数据其实是按行进行组织的。

当然,选择这两种存储模式最重要的因素还是访问模式。如果数据主要是按照行进行读取,比如交易场景、资料管理场景等,那么行式存储应是首选。如果需要经常查询所有数据做聚合,或者进行范围扫描,那么列式存储就很值得一试。

四、数据文件与索引文件

上文介绍了内存与磁盘之间的取舍,从中可看到磁盘其实更为重要的,因为数据库是提供数据持久化存储的服务。故我们开始介绍磁盘上最为重要的两类文件:数据文件和索引文件。

数据文件和索引文件如名字所示,分别保存原始数据与检索数据用的索引数据。但是随着时间的推移,两者的区分也不是那么泾渭分明了。其中以 IOT(索引组织表)模式为代表的数据文件在数据库,特别是分布式数据库中占据越来越重的位置。一种将两者进行融合的趋势已经变得势不可挡。

数据文件最传统的形式为堆组织表(Heap-Organized Table),数据的放置没有一个特别的顺序,一般是按照写入的先后顺序排布。这种数据文件需要一定额外的索引帮助来查找数据。

另外有两种数据表形式自带了一定的索引数据能力,即哈希组织表(Hash-Organized Table)和索引组织表(Index-Organized Table)。前者是将数据通过哈希函数分散到一组数据桶内,桶内的数据一般是按照一定规则进行排序,以提高查询效率;而后者一般采用索引文件的形式来存储数据,以 B+树为例,数据被存储在叶子节点上,这样做的目的是减少检索数据时读取磁盘的次数,同时对范围扫描支持友好。

索引文件的分类模式一般为主键索引与二级索引两类。前者是建立在主键上的,它可能是一个字段或多个字段组成。而其他类型的索引都被称为二级索引。主键索引与数据是一对一关系,而二级索引很有可能是一对多的关系,即多个索引条目指向一条数据。

这里按照索引与数据之间结合的程度,我们又可以把索引分为聚簇索引和非聚簇索引。前者如哈希组织表和索引组织表那样,数据的分布与索引分布是有关联的,它们被“聚”在一起,这样的查询效率很好。而后者最常见的例子就是针对这两种数据文件的二级索引,因为二级索引要索引的列不是主键,故索引与数据是分割的,查询时需要进行多次磁盘读取。但是对于写入,聚簇索引可能需要进行唯一判断,性能会比简单构建的非聚簇索引低效。

最后一点需要说明的是,二级索引需要保存指向最终数据的“引用”。从实现层面上,这个引用可以是数据的实际位置,也可以是数据的主键。前者的好处是查询效率高,而写入需要更新所有索引,故性能相对较低。而后者就恰好相反,查询需要通过主键索引进行映射,效率稍低,但写入性能很稳定,如 MySQL 就是选用后者作为其索引模式。

五、面向分布式的存储引擎

5.1 内存型数据库会倾向于选择分布式模式来进行构建

原因也是显而易见的,由于单机内存容量相比磁盘来说是很小的,故需要构建分布式数据库来满足业务所需要的容量。

5.2 列式存储也与分布式数据库存在天然的联系

你可以去研究一下,很多列式相关的开源项目都与 Hadoop 等平台有关系的。原因是针对 OLAP 的分析数据库,一个非常大的应用场景就是要分析所有数据。

而列式存储可以被认为是这种模式的一种优化,实现该模式的必要条件是要有分布式系统,因为一台机器的处理能力是有瓶颈的。如果希望处理超大规模数据,那么将数据分散到多个节点就成为必要的方式。所以说,列模式是由分析性分布式的优化需求所流行起来的。

至于宽列存储更是分布式数据库场景下才会采用的模式。数据文件的组织形式,分布式数据库几乎不会使用堆组织表。因为该形式过于随意,无法有效地分散数据。不知道学习过数据分片那一讲的时候你有没有注意到,另外两种组织表的名字与两种分片算法是有着天然联系的。哈希组织表数据经过哈希函数散列到不同的桶,这些桶可以被分散到不同节点。而索引组织表一般叶子节点是按一定顺序排列的,这与范围分片又有着某种契合的关系。所以分布式数据库一般都会采用这两种模式作为其存储引擎,甚至一些分布式数据库直接将数据文件当作索引使用。

六、LSM树存储引擎

典型的面向分布式数据库所使用的存储引擎。从其特点可以看到,它高速写入的特性对分布式数据库而言是有非常大吸引力的,同时其KV 结构更是分片所喜欢的一种数据格式,非常适合基于此构建分布式数据库。所以诸如 Apache Cassandra、ClickHouse 和 TiDB 等分布式数据库都选用 LSM 树或类似结构的存储引擎来构建分布式数据库。

LSM 树存储引擎的结构暗含在它的名字内。LS 代表日志结构,说明它是以日志形式来存储数据的,那么日志有什么特点呢?如果你对财务记账有些了解的话,会知道会计在删除一笔记录时,是不会直接拿着橡皮擦去擦掉这个记录的,而是会写一笔与原金额相等的冲抵操作。这就是典型的日志型存储的模式。

日志型存储的特点是对写入非常友好,不像 B 树等结构需要进行随机写,日志存储可以进行顺序性写。因为我们常用的 HDD 磁盘是有旋转机构的,写入延迟主要发生在磁盘旋转与读写臂的移动上。如果数据可以顺序写入,可以大大加快这种磁盘机构的写入速度。

M 则暗含这个结构会存在合并操作,形成最终的可读取结构。这样读取操作就不用去查找对于该记录的所有更改了,从而加快了读取速度。同时将多个记录合并为一个最终结果,也节省了存储空间。虽然合并操作有诸多优点,但是它也不是没有代价的,那就是会消耗一定的计算量和存储空间。

6.1 LSM树的内存结构

LSM 树包含内存驻留单元和磁盘驻留单元。首先数据会写入内存的一个缓冲中,而后再写到磁盘上的不可变文件中。

内存驻留单元一般被称为 MemTable(内存表),是一个可变结构。它被作为一个数据暂存的缓冲使用,同时对外提供读取服务。当其中的数据量到达一个阈值后,数据会被批量写入磁盘中的不可变文件内。

磁盘驻留单元,也就是数据文件,是在内存缓冲刷盘时生成的。且这些数据文件是不可变的,只能提供读取服务。而相对的,内存表同时提供读写两个服务

关于 LSM 树的结构,一般有双树结构和多树结构两种。前者一般是一个理论说明,目前没有一个实际的存储引擎是使用这种结构的。所以我简单说一下双树概念,它有助于你去理解多树结构。

双树中的两棵树分别指:内存驻留单元和磁盘驻留单元中分别有一棵树,你可以想象它们都是 B 树结构的。刷盘的时候,内存数据与磁盘上部分数据进行合并,而后写到磁盘这棵大树中的某个节点下面。成功后,合并前的内存数据与磁盘数据会被移除。

可以看到双树操作是比较简单明了的,而且可以作为一种 B 树类的索引结构而存在。但实际上几乎没有存储引擎去使用它,主要原因是它的合并操作是同步的,也就是刷盘的时候要同步进行合并。而刷盘本身是个相对频繁的操作,这样会造成写放大,也就是会影响写入效率且会占用非常大的磁盘空间。

多树结构是在双树的基础上提出的,内存数据刷盘时不进行合并操作,而是完全把内存数据写入到单独的文件中。那这个时候另外的问题就出现了:随着刷盘的持续进行,磁盘上的文件会快速增加。这时,读取操作就需要在很多文件中去寻找记录,这样读取数据的效率会直线下降。

为了解决这个问题,此种结构会引入合并操作(Compaction)。该操作是异步执行的,它从这众多文件中选择一部分出来,读取里面的内容而后进行合并,最后写入一个新文件中,而后老文件就被删除掉了。如下图所示,这就是典型的多树结构合并操作。而这种结构也是本讲介绍的主要结构。

 6.2 刷盘的流程

数据首先写入当前内存表,当数据量到达阈值后,当前数据表把自身状态转换为刷盘中,并停止接受写入请求。此时会新建另一个内存表来接受写请求。刷盘完成后,由于数据在磁盘上,除了废弃内存表的数据外,还对提交日志进行截取操作。而后将新数据表设置为可以读取状态。

在合并操作开始时,将被合并的表设置为合并中状态,此时它们还可以接受读取操作。完成合并后,原表作废,新表开始启用提供读取服务。

6.3 查询、更新与删除、合并操作

查询操作本身并没有 LSM 树的特色操作。由于目标数据可能在内存表或多个数据表中,故需要对多个数据源的结果数据进行归并操作。其中使用了排序归并操作,原因也非常简单,因为不论是内存表还是数据表,其中的数据都已经完成了排序。排序归并算法广泛应用在多种数据库中,如 Oracle、MySQL,等等。另外数据库中间 Apache ShardingShpere 在处理多数据源 order by 时,也使用了这个方法。

而查询另外一个问题是处理同一份数据不同版本的情况,虽然合并操作可以解决部分问题,但合并前的数据还需要通过查询机制来解决。我刚介绍过 LSM 树中对数据的修改和删除本质上都是增加一条记录,因此数据表和内存表中,一份数据会有多条记录,这个时候查询就需要进行冲突处理。一般一份数据的概念是它们具有相同的 key,而往往不同的版本会有时间戳,根据这个时间戳可以建立写入顺序,这类似于向量时钟的概念。故查询中我们很容易判断哪条数据是最新数据。

更新和删除操作本质上是插入数据,然后根据上面提到的冲突处理机制和合并操作来获取最终数据。更新操作是比较简明的,插入新数据就好了。但是删除操作时插入的是什么呢?

一般插入的是特殊的值,被称作墓碑(Tombstone)。它是一个特殊的值,用来表示记录被删除。如果要产出一个范围内数据呢?Apache Cassandra 的处理方法是引入范围墓碑(Range Tombstone)。

比如有从 k0 到 k9 的 9 条数据,在 k3 处设置开始删除点(包含 k3),在 k7 处设置结束删除点(不包含 k7),那么 k3 到 k6 这四条数据就被删除了。此时查询就会查不到 k4 到 k6,即使它们上面没有设置墓碑。

合并操作是用来维护 LSM 树的结构的,以保证其可以正常运行。需要强调的一点是,我们这里说的合并操作针对的是 LSM 树的结构里面提到的多树结构。在多树结构中,磁盘中表的数量随着刷盘动作的持续进行,而变得越来越多。合并操作正是让它们减少的一种手段。

合并操作会根据一定规则,从磁盘的数据文件中选择若干文件进行合并,而后将新文件写入磁盘,成功后会删除老数据。在整个操作的过程中,对内存的消耗是完全可控的。这是由于每个数据文件都是经过排序的,如上一讲提到的查询规则一样,我们依然可以通过排序归并来合并多个文件中的数据。这种合并每次只会加载部分数据,也就是每个文件头部的数据,进入内存进行合并操作。从而很好地控制了合并操作对内存资源的消耗。

在整个合并的过程中,老的数据表依然可以对外提供读取服务,这说明老数据依然在磁盘中。这就要求磁盘要留有一定的额外空间来容纳生成中的新数据表。同时合并操作可以并行执行,但是一般情况下它们操作的数据不会重合,以免引发竞争问题。合并操作既可以将多个数据文件合并成一个,也可以将一个数据文件拆分成多个。

常见的合并策略有 Size-Tiered Compaction 和 Leveled Compaction。

6.3.1 Size-Tiered Compaction合并算法

其中,数据表按照大小进行合并,较小的数据表逐步合并为较大的数据表。第一层保存的是系统内最小的数据表,它们是刚刚从内存表中刷新出来的。合并过程就是将低层较小的数据表合并为高层较大的数据表的过程。Apache Cassandra 使用过这种合并策略。

该策略的优点是比较简单,容易实现。但是它的空间放大性很差,合并时层级越高该问题越严重。比如有两个 5GB 的文件需要合并,那么磁盘至少要保留 10GB 的空间来完成这次操作,可想而知此种容量压力是巨大的,必然会造成系统不稳定。

6.3.2 Leveled Compaction

如名称所示,该策略是将数据表进行分层,按照编号排成 L0 到 Ln 这样的多层结构。L0 层是从内存表刷盘产生的数据表,该层数据表中间的 key 是可以相交的;L1 层及以上的数据,将 Size-Tiered Compaction 中原本的大数据表拆开,成为多个 key 互不相交的小数据表,每层都有一个最大数据量阈值,当到达该值时,就出发合并操作。每层的阈值是按照指数排布的,例如 RocksDB 文档中介绍了一种排布:L1 是 300MB、L2 是 3GB、L3 是 30GB、L4 为 300GB。

上图概要性地展示了从 L1 层开始,每个小数据表的容量都是相同的,且数据量阈值是按 10 倍增长。即 L1 最多可以有 10 个数据表,L2 最多可以有 100 个,以此类推。

随着数据表不断写入,L1 的数据量会超过阈值。这时就会选择 L1 中的至少一个数据表,将其数据合并到 L2 层与其 key 有交集的那些文件中,并从 L1 中删除这些数据。

仍然以上图为例,一个 L1 层数据表的 key 区间大致能够对应到 10 个 L2 层的数据表,所以一次合并会影响 11 个文件。该次合并完成后,L2 的数据量又有可能超过阈值,进而触发 L2 到 L3 的合并,如此往复。

可见,Leveled Compaction 与 Size-Tiered Compaction 相比,每次合并时不必再选取一层内所有的数据,并且每层中数据表的 key 区间都是不相交的,重复 key 减少了,所以很大程度上缓解了空间放大的问题。

当然在实际应用中会组合两种策略,比如经典的 RocksDB 会在 L0 合并到 L1 时,使用 Size-Tiered Compaction;而从 L1 开始,则是采用经典的 Leveled Compaction。这其中原因是 L0 的数据表之间肯定会存在相同的 key。

6.3.3 RUM 假说

开始介绍这个假说之前,你要先明确几个“放大”概念。

  1. 读放大。它来源于在读取时需要在多个文件中获取数据并解决数据冲突问题,如查询操作中所示的,读取的目标越多,对读取操作的影响越大,而合并操作可以有效缓解读放大问题。
  2. 写放大。对于 LSM 树来说,写放大来源于持续的合并操作,特别是 Leveled Compaction,可以造成多层连续进行合并操作,这样会让写放大问题呈几何倍增长。
  3. 空间放大。这是我在说合并的时候提到过的概念,是指相同 key 的数据被放置了多份,这是在合并操作中所产生的。尤其是 Size-Tiered Compaction 会有严重的空间放大问题。

那么我们可以同时解决以上三种问题吗?根据 RUM 的假说,答案是不能。

该假说总结了数据库系统优化的三个关键参数:读取开销(Read)、更新开销(Update)和内存开销(Memory),也就是 RUM。对应到上面三种放大,可以理解为 R 对应读放大、U 对应写放大,而 M 对应空间放大(Memory 可以理解为广义的存储,而不仅仅指代内存)。

该假说表明,为了优化上述两项的开销必然带来第三项开销的上涨,可谓鱼与熊掌不可兼得。而 LSM 树是用牺牲读取性能来尽可能换取写入性能和空间利用率

而有的同学会发现,合并操作会带来空间放大的问题,理论上应该会浪费空间。但是 LSM 树由于其不可变性,可以引入块压缩,来优化空间占用使用,且内存不需要做预留(B 树需要额外预留内存来进行树更新操作),从而使其可以很好地优化空间。

你应该知道,RUM 所描述的内容过于简单,一些重要指标如延迟、维护性等没有涵盖其中,但是它可以作为我们工具箱里面的一个短小精干的扳手,来快速分析和掌握一个存储引擎的特点。

博文参考

Published by

风君子

独自遨游何稽首 揭天掀地慰生平

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注