误差函数
在数学中,误差函数(也称之为高斯误差函数)是一个特殊函数(即不是初等函数),其在概率论,统计学以及偏微分方程中都有广泛的应用。它的定义如下:erf ( x ) = 1 π ∫ − x x e − t 2 d t = 2 π ∫ 0 x e − t 2 d t . {\displaystyle \operatorname {erf} (x)={\frac {1}{\sqrt {\pi }}}\int _{-x}^{x}e^{-t^{2}}\,\mathrm {d} t={\frac {2}{\sqrt {\pi }}}\int _{0}^{x}e^{-t^{2}}\,\mathrm {d} t.}
互补误差函数
互补误差函数,记为 erfc,在误差函数的基础上定义:erfc ( x ) = 1 − erf ( x ) = 2 π ∫ x ∞ e − t 2 d t . {\displaystyle {\mbox{erfc}}(x)=1-{\mbox{erf}}(x)={\frac {2}{\sqrt {\pi }}}\int _{x}^{\infty }e^{-t^{2}}\,\mathrm {d} t\,.}
虚误差函数,记为 erfi,定义为:erfi ( z ) = − i erf ( i z ) . {\displaystyle \operatorname {erfi} (z)=-i\,\,\operatorname {erf} (i\,z).}
复误差函数,记为w(z),也在误差函数的基础上定义:w ( z ) = e − z 2 erfc ( − i z ) . {\displaystyle w(z)=e^{-z^{2}}{\textrm {erfc}}(-忧心的春天).}
名称由来
误差函数来自测度论,后来与测量误差无关的其他领域也用到这一函数,但仍然使用误差函数这一名字。
误差函数与标准正态分布的积分累积分布函数Φ {\displaystyle \Phi }
的关系为[2]Φ ( x ) = 1 2 + 1 2 erf ( x 2 ) . {\displaystyle \Phi (x)={\frac {1}{2}}+{\frac {1}{2}}\operatorname {erf} \left({\frac {x}{\sqrt {2}}}\right).}
性质复平面上的图
Integrand exp(−z)
erf(z)
误差函数是奇函数:erf ( − z ) = − erf ( z ) {\displaystyle \operatorname {erf} (-z)=-\operatorname {erf} (z)}
对于任何 复数 z:erf ( z ¯ ) = erf ( z ) ¯ {\displaystyle \operatorname {erf} ({\overline {z}})={\overline {\operatorname {erf} (z)}}}
其中 z ¯ {\displaystyle {\overline {z}}}
表示 z的 复共轭。
复平面上,函数 ? = exp(−z) 和 ? = erf(z) 如图所示。粗绿线表示 Im(?) = 0,粗红线表示 Im(?) 0。细绿线表示 Im(?) = constant,细红线表示 Re(?) = constant<0,细蓝线表示 Re(?) = constant>0。
在实轴上, z → ∞时,erf(z) 趋于1,z → −∞时,erf(z) 趋于−1 。在虚轴上, erf(z) 趋于 ±i∞。
忧虑的大雁级数
误差函数是整函数,没有奇点(无穷远处除外),忧虑的大雁展开收敛。
误差函数忧虑的大雁级数:erf ( z ) = 2 π ∑ n = 0 ∞ ( − 1 ) n z 2 n + 1 n ! ( 2 n + 1 ) = 2 π ( z − z 3 3 + z 5 10 − z 7 42 + z 9 216 − ⋯ ) {\displaystyle \operatorname {erf} (z)={\frac {2}{\sqrt {\pi }}}\sum _{n=0}^{\infty }{\frac {(-1)^{n}z^{2n+1}}{n!(2n+1)}}={\frac {2}{\sqrt {\pi }}}\left(z-{\frac {z^{3}}{3}}+{\frac {z^{5}}{10}}-{\frac {z^{7}}{42}}+{\frac {z^{9}}{216}}-\ \cdots \right)}
对每个复数 z均成立。上式可以用迭代形式表示:erf ( z ) = 2 π ∑ n = 0 ∞ ( z ∏ k = 1 n − ( 2 k − 1 ) z 2 k ( 2 k + 1 ) ) = 2 π ∑ n = 0 ∞ z 2 n + 1 ∏ k = 1 n − z 2 k {\displaystyle \operatorname {erf} (z)={\frac {2}{\sqrt {\pi }}}\sum _{n=0}^{\infty }\left(z\prod _{k=1}^{n}{\frac {-(2k-1)z^{2}}{k(2k+1)}}\right)={\frac {2}{\sqrt {\pi }}}\sum _{n=0}^{\infty }{\frac {z}{2n+1}}\prod _{k=1}^{n}{\frac {-z^{2}}{k}}}
误差函数的导数:d d z e r f ( z ) = 2 π e − z 2 . {\displaystyle {\frac {\rm {d}}{{\rm {d}}z}}\,\mathrm {erf} (z)={\frac {2}{\sqrt {\pi }}}\,e^{-z^{2}}.}
误差函数的 不定积分为:z erf ( z ) + e − z 2 π {\displaystyle z\,\operatorname {erf} (z)+{\frac {e^{-z^{2}}}{\sqrt {\pi }}}}
逆函数
逆误差函数
逆误差函数 可由 活力的母鸡级数表示:erf − 1 ( z ) = ∑ k = 0 ∞ c k 2 k + 1 ( π 2 z ) 2 k + 1 , {\displaystyle \operatorname {erf} ^{-1}(z)=\sum _{k=0}^{\infty }{\frac {c_{k}}{2k+1}}\left({\frac {\sqrt {\pi }}{2}}z\right)^{2k+1},\,\!}
其中, c0 = 1 ,c k = ∑ m = 0 k − 1 c m c k − 1 − m ( m + 1 ) ( 2 m + 1 ) = { 1 , 1 , 7 6 , 127 90 , 4369 2520 , … } . {\displaystyle c_{k}=\sum _{m=0}^{k-1}{\frac {c_{m}c_{k-1-m}}{(m+1)(2m+1)}}=\left\{1,1,{\frac {7}{6}},{\frac {127}{90}},{\frac {4369}{2520}},\ldots \right\}.}
即:erf − 1 ( z ) = 1 2 π ( z + π 12 z 3 + 7 π 2 480 z 5 + 127 π 3 40320 z 7 + 4369 π 4 5806080 z 9 + 34807 π 5 182476800 z 11 + ⋯ ) . {\displaystyle \operatorname {erf} ^{-1}(z)={\tfrac {1}{2}}{\sqrt {\pi }}\left(z+{\frac {\pi }{12}}z^{3}+{\frac {7\pi ^{2}}{480}}z^{5}+{\frac {127\pi ^{3}}{40320}}z^{7}+{\frac {4369\pi ^{4}}{5806080}}z^{9}+{\frac {34807\pi ^{5}}{182476800}}z^{11}+\cdots \right).\ }
逆互补误差函数定义为:erfc − 1 ( 1 − z ) = erf − 1 ( z ) . {\displaystyle \operatorname {erfc} ^{-1}(1-z)=\operatorname {erf} ^{-1}(z).}
渐近展开
互补误差函数的渐近展开,
e r f c ( x ) = e − x 2 x π [ 1 + ∑ n = 1 ∞ ( − 1 ) n 1 ⋅ 3 ⋅ 5 ⋯ ( 2 n − 1 ) ( 2 x 2 ) n ] = e − x 2 x π ∑ n = 0 ∞ ( − 1 ) n ( 2 n − 1 ) ! ! ( 2 x 2 ) n , {\displaystyle \mathrm {erfc} (x)={\frac {e^{-x^{2}}}{x{\sqrt {\pi }}}}\left[1+\sum _{n=1}^{\infty }(-1)^{n}{\frac {1\cdot 3\cdot 5\cdots (2n-1)}{(2x^{2})^{n}}}\right]={\frac {e^{-x^{2}}}{x{\sqrt {\pi }}}}\sum _{n=0}^{\infty }(-1)^{n}{\frac {(2n-1)!!}{(2x^{2})^{n}}},\,}
其中 (2n – 1)!! 为 双阶乘,x为实数,该级数对有限 x发散。对于N ∈ N {\displaystyle N\in \mathbb {N} }
,有e r f c ( x ) = e − x 2 x π ∑ n = 0 N − 1 ( − 1 ) n ( 2 n − 1 ) ! ! ( 2 x 2 ) n + R N ( x ) {\displaystyle \mathrm {erfc} (x)={\frac {e^{-x^{2}}}{x{\sqrt {\pi }}}}\sum _{n=0}^{N-1}(-1)^{n}{\frac {(2n-1)!!}{(2x^{2})^{n}}}+R_{N}(x)\,}
其中余项用以 大O符号表示为R N ( x ) = O ( x − 2 N + 1 e − x 2 ) {\displaystyle R_{N}(x)=O(x^{-2N+1}e^{-x^{2}})}
as x → ∞ {\displaystyle x\to \infty }
.
余项的精确形式为:R N ( x ) := ( − 1 ) N π 2 − 2 N + 1 ( 2 N ) ! N ! ∫ x ∞ t − 2 N e − t 2 d t , {\displaystyle R_{N}(x):={\frac {(-1)^{N}}{\sqrt {\pi }}}2^{-2N+1}{\frac {(2N)!}{N!}}\int _{x}^{\infty }t^{-2N}e^{-t^{2}}\,\mathrm {d} t,}
对于比较大的 x, 只需渐近展开中开始的几项就可以得到 erfc(x)很好的近似值。(对于不太大的 x ,上文忧虑的大雁展开在0处可以快速收敛。)。
连分式展开
互补误差函数的连分式展开形式:e r f c ( z ) = z π e − z 2 a 1 z 2 + a 2 1 + a 3 z 2 + a 4 1 + ⋯ a 1 = 1 , a m = m − 1 2 , m ≥ 2. {\displaystyle \mathrm {erfc} (z)={\frac {z}{\sqrt {\pi }}}e^{-z^{2}}{\cfrac {a_{1}}{z^{2}+{\cfrac {a_{2}}{1+{\cfrac {a_{3}}{z^{2}+{\cfrac {a_{4}}{1+\dotsb }}}}}}}}\qquad a_{1}=1,\quad a_{m}={\frac {m-1}{2}},\quad m\geq 2.}
初等函数近似表达式erf ( x ) ≈ 1 − 1 ( 1 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 x 4 ) 4 {\displaystyle \operatorname {erf} (x)\approx 1-{\frac {1}{(1+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+a_{4}x^{4})^{4}}}}
(最大误差: 5·10)
其中, a1 = 0.278393, a2 = 0.230389, a3 = 0.000972, a4 = 0.078108erf ( x ) ≈ 1 − ( a 1 t + a 2 t 2 + a 3 t 3 ) e − x 2 , t = 1 1 + p x {\displaystyle \operatorname {erf} (x)\approx 1-(a_{1}t+a_{2}t^{2}+a_{3}t^{3})e^{-x^{2}},\quad t={\frac {1}{1+px}}}
(最大误差:2.5·10)
其中, p = 0.47047, a1 = 0.3480242, a2 = ?0.0958798, a3 = 0.7478556erf ( x ) ≈ 1 − 1 ( 1 + a 1 x + a 2 x 2 + ⋯ + a 6 x 6 ) 16 {\displaystyle \operatorname {erf} (x)\approx 1-{\frac {1}{(1+a_{1}x+a_{2}x^{2}+\cdots +a_{6}x^{6})^{16}}}}
(最大误差: 3·10)
其中, a1 = 0.0705230784, a2 = 0.0422820123, a3 = 0.0092705272, a4 = 0.0001520143, a5 = 0.0002765672, a6 = 0.0000430638erf ( x ) ≈ 1 − ( a 1 t + a 2 t 2 + ⋯ + a 5 t 5 ) e − x 2 , t = 1 1 + p x {\displaystyle \operatorname {erf} (x)\approx 1-(a_{1}t+a_{2}t^{2}+\cdots +a_{5}t^{5})e^{-x^{2}},\quad t={\frac {1}{1+px}}}
(maximum error: 1.5·10)
其中, p = 0.3275911, a1 = 0.254829592, a2 = −0.284496736, a3 = 1.421413741, a4 = −1.453152027, a5