感谢网友 Colorful M 的线索投递!
4 月 21 日消息,复旦大学自然语言处理实验室开发的新版 MOSS 模型今日正式上线,成为国内首个插件增强的开源对话语言模型。
目前,MOSS 模型已上线开源,相关代码、数据、模型参数已在 Github 和 Hugging Face 等平台开放,供科研人员下载。
模型
-
moss-moon-003-base: MOSS-003 基座模型,在高质量中英文语料上自监督预训练得到,预训练语料包含约 700B 单词,计算量约 6.67×1022 次浮点数运算。
-
moss-moon-003-sft: 基座模型在约 110 万多轮对话数据上微调得到,具有指令遵循能力、多轮对话能力、规避有害请求能力。
-
moss-moon-003-sft-plugin: 基座模型在约 110 万多轮对话数据和约 30 万插件增强的多轮对话数据上微调得到,在 moss-moon-003-sft 基础上还具备使用搜索引擎、文生图、计算器、解方程等四种插件的能力。
-
moss-moon-003-pm: 在基于 moss-moon-003-sft 收集到的偏好反馈数据上训练得到的偏好模型,将在近期开源。
-
moss-moon-003: 在 moss-moon-003-sft 基础上经过偏好模型 moss-moon-003-pm 训练得到的最终模型,具备更好的事实性和安全性以及更稳定的回复质量,将在近期开源。
-
moss-moon-003-plugin: 在 moss-moon-003-sft-plugin 基础上经过偏好模型 moss-moon-003-pm 训练得到的最终模型,具备更强的意图理解能力和插件使用能力,将在近期开源。
数据
-
moss-002-sft-data: MOSS-002 所使用的多轮对话数据,覆盖有用性、忠实性、无害性三个层面,包含由 text-davinci-003 生成的约 57 万条英文对话和 59 万条中文对话。
-
moss-003-sft-data: moss-moon-003-sft 所使用的多轮对话数据,基于 MOSS-002 内测阶段采集的约 10 万用户输入数据和 gpt-3.5-turbo 构造而成,相比 moss-002-sft-data,moss-003-sft-data 更加符合真实用户意图分布,包含更细粒度的有用性类别标记、更广泛的无害性数据和更长对话轮数,约含 110 万条对话数据。目前仅开源少量示例数据,完整数据将在近期开源。
-
moss-003-sft-plugin-data: moss-moon-003-sft-plugin 所使用的插件增强的多轮对话数据,包含支持搜索引擎、文生图、计算器、解方程等四个插件在内的约 30 万条多轮对话数据。目前仅开源少量示例数据,完整数据将在近期开源。
-
moss-003-pm-data: moss-moon-003-pm 所使用的偏好数据,包含在约 18 万额外对话上下文数据及使用 moss-moon-003-sft 所产生的回复数据上构造得到的偏好对比数据,将在近期开源。
MOSS 的 GitHub 页面:点此查看