可视化神器Plotly绘制3D图

公众号:尤而小屋
作者:Peter
编辑:Peter

大家好,我是Peter~

本文中重点介绍的是如何利用plotly来绘制3D图形。

在3D图形中一般是包含3个轴的:x、y、z。在Plotly中绘图的时候,我们对layout布局进行设置的时候,通常是对一个叫做scene的参数进行设置,在这个参数就是包含x、y、z3个不同轴的设置,比如轴的范围、名称、颜色等。同时还会介绍不同类型的3D图形,比如:3D散点图、3D平面图等

先睹为快

首先我们看看几个由Plotly实现的3D图形,你相信它们其实是同一个吗






Plotly连载

Plotly目前连载的全部文章如下:

导入库、数据

本文中的很多图形都是基于鸢尾花数据集来绘制的,所以我们先导入库和数据集:

import pandas as pd
import numpy as npimport plotly.express as px
import plotly.graph_objects as go

3D Scatter(3D散点图):基于plotly_express

基本3D图形

最简单的3D图形,通过使用px.scatter_3d来绘制:

fig = px.scatter_3d(iris,x="sepal_length",y="sepal_width",z="petal_width",color="species"
)fig.show()

设置散点不同的形状和大小;

# 还可以给每个散点加上不同的markder标记fig = px.scatter_3d(iris,x="sepal_length",y="sepal_width",z="petal_length",color="petal_width",symbol="species"
)fig.show()

# 设置散点大小fig = px.scatter_3d(iris,x="sepal_length",y="sepal_width",z="petal_width",color="petal_length",size="petal_length",size_max=18,  # 散点最大值opacity=0.7,  # 透明度symbol="species"
)
fig.update_layout(margin=dict(l=0,r=0,b=0,t=0))fig.show()

3D Scatter:基于go.Scatter3dME

基础3D图形

import plotly.graph_objects as go
import numpy as np# 模拟数据
t = np.linspace(0, 10, 50)
x, y, z = np.cos(t), np.sin(t), tfig = go.Figure(data=[go.Scatter3d(x=x,  # 设置3个不同的坐标数据y=y, z=z,mode='markers')])  # 'lines', 'markers', 'text'  3种情况的组合fig.show()

改变散点的颜色:

import plotly.graph_objects as go
import numpy as npN = 88
t = np.linspace(0, 20, N)
x, y, z = np.cos(t), np.sin(t), tfig = go.Figure(data=[go.Scatter3d(x=x,y=y,z=z,mode='markers',marker=dict(  # 对标记的设置size=10,color=z,  # 颜色设置colorscale='Viridis',   # 选择颜色opacity=0.86  # 透明度)
)])# 图形的边际范围设置
fig.update_layout(margin=dict(l=4, r=4, b=0, t=0))
fig.show()

3D平面图:go.Surface实现

基于地形的3D平面图

使用的数据如下:

import plotly.graph_objects as goimport pandas as pd# 读取在线的csv文件z_data = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/api_docs/mt_bruno_elevation.csv',index_col=0)  # index_col参数表示将第一列的数据当做索引
z_data.head()

fig = go.Figure(data=[go.Surface(z=z_data.values)])fig.update_layout(title="3D Surface图形绘制", # 标题autosize=False,  # 尺度自动缩放width=700,  # 长宽height=600,margin=dict(l=65,r=50,b=65,t=90)  # 4个位置的距离)fig.show()

带有轮廓线的3D图形

# 数据同上# 1、先生成画布
fig = go.Figure(data=[go.Surface(z=z_data.values)])fig.update_traces(contours_z=dict(  # 轮廓设置show=True,  # 开启是否显示usecolormap=True,  # 颜色设置highlightcolor="mistyrose",  # 高亮project_z=True))fig.update_layout(title='带有轮廓的3D平面图',autosize=False,scene_camera_eye=dict(x=1.87, y=0.88, z=-0.64),width=600, height=500,margin=dict(l=65, r=50, b=65, t=90)
)fig.show()

多个3D图形

在一个画布中国绘制多个图形:

z1 = np.array([  # numpy数组形式[8.83,8.89,8.81,8.87,8.9,8.87],[8.89,8.94,8.85,8.94,8.96,8.92],[8.84,8.9,8.82,8.92,8.93,8.91],[8.79,8.85,8.79,8.9,8.94,8.92],[8.79,8.88,8.81,8.9,8.95,8.92],[8.8,8.82,8.78,8.91,8.94,8.92],[8.75,8.78,8.77,8.91,8.95,8.92],[8.8,8.8,8.77,8.91,8.95,8.94],[8.74,8.81,8.76,8.93,8.98,8.99]
])z2 = z1 + 5
z3 = z1 - 5fig = go.Figure(data=[go.Surface(z=z1),go.Surface(z=z2, showscale=False, opacity=0.9),go.Surface(z=z3, showscale=False, opacity=0.9)])fig.show()

6 3D气泡图:3D Bubble

6.1 基于Plotly_Express实现

data = px.data.gapminder()  # gdp数据集fig = px.scatter_3d(data,  # 传入数据x='year',  # 选择3个坐标y='continent', z='pop', size='gdpPercap',  # 气泡大小color='lifeExp',  # 颜色hover_data=['country'])  # 悬停数据# 如果数据过大,可以使用对数来表示
fig.update_layout(scene_zaxis_type="log")  # z轴取对数fig.show()

6.2 基于go.Scatter3d实现

数据部分:

start, end = 800,1200  # 选择开始和结束索引,用于筛选数据fig = go.Figure(data=go.Scatter3d(x=df1['year'][start:end],  # 通过设置的数值,切片方式取出部分数据y=df1['continent'][start:end],z=df1['pop'][start:end],text=df1['country'][start:end], # 文本显示的数据mode='markers',  # 气泡的显示形式:标记markermarker=dict(   sizemode = 'diameter',  # 大小的形式:'diameter', 'area'sizeref = 1500,size = df1['gdpPercap'][start:end],color = df1['lifeExp'][start:end],colorscale = 'Viridis',line_color='rgb(140, 140, 170)')
))fig.update_layout(height=800, width=800,title='3D气泡图绘制')fig.show()

7 3D等值曲面图(Isosurface)

使用go.Isosurface来绘制

7.1 基础3D等值

import plotly.graph_objects as gofig= go.Figure(data=go.Isosurface(x=[0,0,0,0,1,1,1,1],  # 设置3个坐标y=[1,0,1,0,1,0,1,0],z=[1,1,0,0,1,1,0,0],value=[1,2,3,4,5,6,7,8],  # 设置取值isomin=2,  # 颜色取值范围isomax=7,
))fig.show()

7.2 改变等值曲面的个数

在下面的案例中使用了numpy中的一个函数mgrid:

  • np.mgrid函数返回多维结构,常见的如2D图形,3D图形。
  • 对比np.meshgrid,在处理大数据时速度更快,且能处理多维(np.meshgrid只能处理2维)
  • ret = np.mgrid[ 第1维,第2维 ,第3维 , …] :返回多值,以多个矩阵的形式返回,
  • 第1返回值为第1维数据在最终结构中的分布,第2返回值为第2维数据在最终结构中的分布,以此类推。

import plotly.graph_objects as go
import numpy as np# 通过numpy的mgrid函数来生成3个数据
X, Y, Z = np.mgrid[-5:5:40j, -5:5:40j, -5:5:40j]# 取值
values = X * X * 0.5 + Y * Y + Z * Z * 2fig = go.Figure(data=go.Isosurface(x=X.flatten(),y=Y.flatten(),z=Z.flatten(),value=values.flatten(),isomin=10,isomax=50,surface_count=5, colorbar_nticks=5, caps=dict(x_show=False, y_show=False)))fig.show()

改变颜色和透明度

import plotly.graph_objects as go
import numpy as np# 通过numpy的mgrid函数来生成3个数据
X, Y, Z = np.mgrid[-5:5:40j, -5:5:40j, -5:5:40j]# 取值
values = X * X * 0.5 + Y * Y + Z * Z * 2fig = go.Figure(data=go.Isosurface(x=X.flatten(),y=Y.flatten(),z=Z.flatten(),value=values.flatten(),opacity=0.6,  # 改变图形的透明度colorscale='plotly3',  # 改变颜色isomin=10,isomax=50,surface_count=5, colorbar_nticks=5, caps=dict(x_show=False, y_show=False)))fig.show()

高级等值曲面图

# 生成3个numpy数组
X, Y, Z = np.mgrid[-5:5:40j, -5:5:40j, -5:5:40j]# 具体值
values = X * X * 0.5 + Y * Y + Z * Z * 2fig = go.Figure(data=go.Isosurface(x=X.flatten(),  # 3个坐标y=Y.flatten(),z=Z.flatten(),value=values.flatten(),  # 数据值isomin=5,  # 值的范围isomax=50,surface_fill=0.7, # 表面填充色度caps=dict(x_show=False, y_show=False),slices_z=dict(show=True, locations=[-1, -9,-5]),slices_y=dict(show=True, locations=[1,8]),))fig.show()

X, Y, Z = np.mgrid[-5:5:40j, -5:5:40j, 0:5:20j]values = X * X * 0.5 + Y * Y + Z * Z * 2fig = go.Figure(data=go.Isosurface(x=X.flatten(),  # 3个坐标轴和取值y=Y.flatten(),z=Z.flatten(),value=values.flatten(),isomin=30,  #  等曲面的取值大小isomax=50,surface=dict(count=3, fill=0.7, pattern='odd'),  # pattern取值:'all', 'odd', 'even'caps=dict(x_show=True, y_show=True),))fig.show()

Published by

风君子

独自遨游何稽首 揭天掀地慰生平