传统的FLASH分为Nor falsh和Nand flash。
(1)Nor flash
Nor flash存储以块为单元,写入时必须先擦除,并且擦除和写入的速度都很慢。但nor fash具有SRAM接口,有单独的地址总线和地址总线,接口简单,就像是访问ROM一样,读取速度快,能随机访问存储单元。正是这些特性,所以nor falsh被广泛用来存储启动代码。Nor falsh的价格较贵,市面上一般1~16M的小容量的FLASH居多。
例如SST39VF6401B(支持JEDEC标准),它的大小是8MB,共128个块,块大小是64KB,具有SRAM接口:
读写速度:读70~90ns,擦除块典型值是18ms。
在mtd源代码中,nor falsh的驱动代码在driversmtdmaps目录下。
目前,Nor flash有两种标准JEDEC和CFI。
JEDEC:全称是Joint Electron Device Engineering Council 即电子元件工业联合会。JEDEC是由生产厂商们制定的国际性协议,主要为内存制定。JEDEC用来帮助程序读取Flash的制造商ID和设备ID,以确定Flash的大小和算法,如果芯片不支持CFI,就需使用JEDEC了。工业标准的内存通常指的是符合JEDEC标准的一组内存。
CFI:即公共闪存接口(Common Flash Interface)。CFI是一个公开的标准的从Flash Memory器件中读取数据的接口。它可以使系统软件查询已安装的Flash Memory器件的各种参数,包括器件阵列结构参数、电气和时间参数以及器件支持的功能等。CFI标准的应用解决了各个FLASH厂商操作命令集和电气参数千差万别的难题,目前市面上的Nor flash大多支持CFI校准。
CFI标准规定先往FLASH数据总线写入55H,再写入98H,然后从地址10H处读取3个数据,如果这3个数据是’Q’、’R’、’Y’,那么遵循CFI标准。在其它地址,保存了FLASH的其它信息,如生产厂商ID,设备ID,FLASH总线宽度,BLOCK总数据,BLOCK大小等所有FLASH有关的信息。cfi.h中的cfi_ident即是查询的数据结构:
[cpp] view plaincopyprint?
- /* Basic Query Structure */
- struct cfi_ident {
- uint8_t qry[3];//’Q‘,’R’,’Y’
- uint16_t P_ID;
- uint16_t P_ADR;
- uint16_t A_ID;
- uint16_t A_ADR;
- uint8_t VccMin;
- uint8_t VccMax;
- uint8_t VppMin;
- uint8_t VppMax;
- uint8_t WordWriteTimeoutTyp;
- uint8_t BufWriteTimeoutTyp;
- uint8_t BlockEraseTimeoutTyp;
- uint8_t ChipEraseTimeoutTyp;
- uint8_t WordWriteTimeoutMax;
- uint8_t BufWriteTimeoutMax;
- uint8_t BlockEraseTimeoutMax;
- uint8_t ChipEraseTimeoutMax;
- uint8_t DevSize;
- uint16_t InterfaceDesc;
- uint16_t MaxBufWriteSize;
- uint8_t NumEraseRegions;
- uint32_t EraseRegionInfo[0]; /* Not host ordered */
- } __attribute__((packed));
/* Basic Query Structure */
struct cfi_ident {uint8_t qry[3];//’Q‘,'R','Y'uint16_t P_ID;uint16_t P_ADR;uint16_t A_ID;uint16_t A_ADR;uint8_t VccMin;uint8_t VccMax;uint8_t VppMin;uint8_t VppMax;uint8_t WordWriteTimeoutTyp;uint8_t BufWriteTimeoutTyp;uint8_t BlockEraseTimeoutTyp;uint8_t ChipEraseTimeoutTyp;uint8_t WordWriteTimeoutMax;uint8_t BufWriteTimeoutMax;uint8_t BlockEraseTimeoutMax;uint8_t ChipEraseTimeoutMax;uint8_t DevSize;uint16_t InterfaceDesc;uint16_t MaxBufWriteSize;uint8_t NumEraseRegions;uint32_t EraseRegionInfo[0]; /* Not host ordered */
} __attribute__((packed));
(2)Nand flash
和Norflash一样,Nand flash存储以块为单元,写入时必须先擦除。nand flash擦除和写要比nor flash快,但读取速度比它慢。Nand flash采用复杂的IO口来串行地访问数据,读和写的最小单元都是一个页,所以CPU不能像nor flash一样直接运行FLASH上的代码。Nor falsh的优势是价格便宜,市面上一般以大容量为主,容量大小一般为8M~几个GB。Nand flash一般用来存储数据,如用来做文件系统存储空间。
Nand falsh的一个页的数据分为数据区域和额外数据区(称为OOB),例如一个页包含2KB的数据区和64B的OOB。OOB数据区一般用来存储特定的数据,如数据校验、坏块标识等。
Nand flash在擦写的过程中可能形成坏块,如果检测到坏块,一般在OOB数据区标识它。而实际上,Nand flash从工厂生产出来就可能存在坏块,有关坏块标识的细节可以相应的FLASH手册上找到说明。
举例:三星的K9K8G08U0B
它的大小是1GB,共8192个块,块大小是2KB,OOB大小是64B。它的接口是8位的串行数据:
数据读取一个页的时间是25us。擦除一个块的时间典型值是1.5ms。
在mtd源代码中,nor falsh的驱动代码在driversmtdnand目录下。
OneNand Flash
随着过去几十年的Nand技术的发展,一些公司,基于原先的NAND的架构,设计出一种理想的单存储芯片,其集成了SRAM的缓存和逻辑接口,它就是OneNand Flash。OneNand既实现NOR Flash的高速读取速度,又保留了Nand Flash的大容量数据存储的优点。由于笔者在实际项目中还没有用到一款onenand,所以不做举例,读者可以到GOOGLE搜索到onenand的信息。
在mtd源代码中,nor falsh的驱动代码在driversmtdonenand目录下。
————————————————————
0.NAND的操作管理方式
NAND FLASH的管理方式:以三星FLASH为例,一片Nand flash为一个设备(device),1 (Device) = xxxx (Blocks),1 (Block) = xxxx (Pages),1(Page) =528 (Bytes) = 数据块大小(512Bytes) + OOB 块大小(16Bytes,除OOB第六字节外,通常至少把OOB的前3个字节存放Nand Flash硬件ECC码)。
关于OOB区,是每个Page都有的。Page大小是512字节的NAND每页分配16字节的OOB;如果NAND物理上是2K的Page,则每个Page分配64字节的OOB。如下图:
以HYNIX为例,图中黑体的是实际探测到的NAND,是个2G bit(256M)的NAND。PgSize是2K字节,PgsPBlk表示每个BLOCK包含64页,那么每个BLOCK占用的字节数是 64X2K=128K字节;该NAND包好2048个BLOCK,那么可以算出NAND占用的字节数是2048X128K=256M,与实际相符。需要注 意的是SprSize就是OOB大小,也恰好是2K页所用的64字节。
1.为什么会出现坏块
由于NAND Flash的工艺不能保证NAND的Memory Array在其生命周期中保持性能的可靠,因此,在NAND的生产中及使用过程中会产生坏块。坏块的特性是:当编程/擦除这个块时,会造成Page Program和Block Erase操作时的错误,相应地反映到Status Register的相应位。
2.坏块的分类
总体上,坏块可以分为两大类:(1)固有坏块:这是生产过程中产生的坏块,一般芯片原厂都会在出厂时都会将每个坏块第一个page的spare area的第6个byte标记为不等于0xff的 值。(2)使用坏块:这是在NAND Flash使用过程中,如果Block Erase或者Page Program错误,就可以简单地将这个块作为坏块来处理,这个时候需要把坏块标记起来。为了和固有坏块信息保持一致,将新发现的坏块的第一个page的 spare area的第6个Byte标记为非0xff的值。
3.坏块管理
根据上面的这些叙述,可以了解NAND Flash出厂时在spare area中已经反映出了坏块信息,因此, 如果在擦除一个块之前,一定要先check一下第一页的spare area的第6个byte是否是0xff,如果是就证明这是一个好块,可以擦除;如果是非0xff,那么就不能擦除,以免将坏块标记擦掉。 当然,这样处理可能会犯一个错误―――“错杀伪坏块”,因为在芯片操作过程中可能由于 电压不稳定等偶然因素会造成NAND操作的错误。但是,为了数据的可靠性及软件设计的简单化,还是需要遵照这个标准。
可以用BBT:bad block table,即坏块表来进行管理。各家对nand的坏块管理方法都有差异。比如专门用nand做存储的,会把bbt放到block0,因为第0块一定是好 的块。但是如果nand本身被用来boot,那么第0块就要存放程序,不能放bbt了。 有的把bbt放到最后一块,当然,这一块坚决不能为坏块。 bbt的大小跟nand大小有关,nand越大,需要的bbt也就越大。
需要注意的是:OOB是每个页都有的数据,里面存的有ECC(当然不仅仅);而BBT是一个FLASH才有一个;针对每个BLOCK的坏块识别则是该块第一页spare area的第六个字节。
4.坏块纠正
ECC: NAND Flash出错的时候一般不会造成整个Block或是Page不能读取或是全部出错,而是整个Page(例如512Bytes)中只有一个或几个bit出 错。一般使用一种比较专用的校验——ECC。ECC能纠正单比特错误和检测双比特错误,而且计算速度很快,但对1比特以上的错误无法纠正,对2比特以上的 错误不保证能检测。
ECC一般每256字节原始数据生成3字节ECC校验数据,这三字节共24比特分成两部分:6比特的列校验和16比特的行校验,多余的两个比特置1。(512生成两组ECC,共6字节)
当往NAND Flash的page中写入数据的时候,每256字节我们生成一个ECC校验和,称之为原ECC校验和,保存到PAGE的OOB (out- of-band)数据区中。其位置就是eccpos[]。校验的时候,根据上述ECC生成原理不难推断:将从OOB区中读出的原ECC校验和新ECC校验 和按位异或,若结果为0,则表示不存在错(或是出现了ECC无法检测的错误);若3个字节异或结果中存在11个比特位为1,表示存在一个比特错误,且可纠 正;若3个字节异或结果中只存在1个比特位为1,表示OOB区出错;其他情况均表示出现了无法纠正的错误。
5.补充
(1)需要对前面由于Page Program错误发现的坏块进行一下特别说明。如果在对一个块的某个page进行编程的时候发生了错误就要把这个块标记为坏块,首先就要把块里其他好的 面的内容备份到另外一个空的好块里面,然后,把这个块标记为坏块。当然,这可能会犯“错杀”之误,一个补救的办法,就是在进行完块备份之后,再将这个坏块 擦除一遍,如果Block Erase发生错误,那就证明这个块是个真正的坏块,那就毫不犹豫地将它打个“戳”吧!
(2)可能有人会问,为什么要使用每个块第一页的spare area的第六个byte作为坏块标记。这是NAND Flash生产商的默认约定,你可以看到Samsung,Toshiba,STMicroelectronics都是使用这个Byte作为坏块标记的。
(3)为什么好块用0xff来标记?因为Nand Flash的擦除即是将相应块的位全部变为1,写操作时只能把芯片每一位(bit)只能从1变为0,而不能从0变为1。0XFF这个值就是标识擦除成功,是好块。
====================================================
[c-sharp] view plaincopyprint?
- bbt坏块管理
- 日月 发表于 – 2010-3-2 9:59:00
- 2
- 推荐
- 前面看到在nand_scan()函数的最后将会跳至scan_bbt()函数,这个函数在nand_scan里面有定义:
- 2415 if (!this->scan_bbt)
- 2416 this->scan_bbt = nand_default_bbt;
- nand_default_bbt()位于Nand_bbt.c文件中。
- 1047 /**
- * nand_default_bbt – [NAND Interface] Select a default bad block table for the device
- * @mtd: MTD device structure
- *
- * This selects the default bad block table
- * support for the device and calls the nand_scan_bbt
- **/
- int nand_default_bbt (struct mtd_info *mtd)
- {
- struct nand_chip *this = mtd->priv;
- 这个函数的作用是建立默认的坏块表。
- 1059 /* Default for AG-AND. We must use a flash based
- * bad block table as the devices have factory marked
- * _good_ blocks. Erasing those blocks leads to loss
- * of the good / bad information, so we _must_ store
- * this information in a good / bad table during
- * startup
- */
- if (this->options & NAND_IS_AND) {
- /* Use the default pattern deors */
- if (!this->bbt_td) {
- this->bbt_td = &bbt_main_descr;
- this->bbt_md = &bbt_mirror_descr;
- }
- this->options |= NAND_USE_FLASH_BBT;
- return nand_scan_bbt (mtd, &agand_flashbased);
- }
- 如果Flash的类型是AG-AND(这种Flash类型比较特殊,既不是MLC又不是SLC,因此不去深究了,而且好像瑞萨要把它淘汰掉),需要使用默认的模式描述符,最后再进入nand_scan_bbt()函数。
- 1078 /* Is a flash based bad block table requested ? */
- if (this->options & NAND_USE_FLASH_BBT) {
- /* Use the default pattern deors */
- if (!this->bbt_td) {
- this->bbt_td = &bbt_main_descr;
- this->bbt_md = &bbt_mirror_descr;
- }
- if (!this->badblock_pattern) {
- this->badblock_pattern = (mtd->oobblock > 512) ?
- &largepage_flashbased : &smallpage_flashbased;
- }
- } else {
- this->bbt_td = NULL;
- this->bbt_md = NULL;
- if (!this->badblock_pattern) {
- this->badblock_pattern = (mtd->oobblock > 512) ?
- &largepage_memorybased : &smallpage_memorybased;
- }
- }
- return nand_scan_bbt (mtd, this->badblock_pattern);
- 如果Flash芯片需要使用坏块表,对于1208芯片来说是使用smallpage_memorybased。
- 985 static struct nand_bbt_descr smallpage_memorybased = {
- .options = NAND_BBT_SCAN2NDPAGE,
- .offs = 5,
- .len = 1,
- .pattern = scan_ff_pattern
- };
- 暂时没看到如何使用这些赋值,先放着。后面检测坏块时用得着。
- 1099 return nand_scan_bbt (mtd, this->badblock_pattern);
- 最后将badblock_pattern作为参数,调用nand_can_bbt函数。
- 844 /**
- * nand_scan_bbt – [NAND Interface] scan, find, read and maybe create bad block table(s)
- * @mtd: MTD device structure
- * @bd: deor for the good/bad block search pattern
- *
- * The checks, if a bad block table(s) is/are already
- * available. If not it scans the device for manufacturer
- * marked good / bad blocks and writes the bad block table(s) to
- * the selected place.
- *
- * The bad block table memory is allocated here. It must be freed
- * by calling the nand_free_bbt .
- *
- */
- int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
- {
- 检测、寻找、读取甚至建立坏块表。函数检测是否已经存在一张坏块表,否则建立一张。坏块表的内存分配也在这个函数中。
- 860 struct nand_chip *this = mtd->priv;
- int len, res = 0;
- uint8_t *buf;
- struct nand_bbt_descr *td = this->bbt_td;
- struct nand_bbt_descr *md = this->bbt_md;
- len = mtd->size >> (this->bbt_erase_shift + 2);
- /* Allocate memory (2bit per block) */
- this->bbt = kmalloc (len, GFP_KERNEL);
- if (!this->bbt) {
- printk (KERN_ERR ”nand_scan_bbt: Out of memory/n”);
- return -ENOMEM;
- }
- /* Clear the memory bad block table */
- memset (this->bbt, 0x00, len);
- 一些赋值、变量声明、内存分配,每个block分配2bit的空间。1208有4096个block,应该分配4096*2bit的空间。
- 877 /* If no primary table decriptor is given, scan the device
- * to build a memory based bad block table
- */
- if (!td) {
- if ((res = nand_memory_bbt(mtd, bd))) {
- printk (KERN_ERR ”nand_bbt: Can’t scan flash and build the RAM-based BBT/n”);
- kfree (this->bbt);
- this->bbt = NULL;
- }
- return res;
- }
- 如果没有提供ptd,就扫描设备并建立一张。这里调用了nand_memory_bbt()这个内联函数。
- 653 /**
- * nand_memory_bbt – [GENERIC] create a memory based bad block table
- * @mtd: MTD device structure
- * @bd: deor for the good/bad block search pattern
- *
- * The creates a memory based bbt by scanning the device
- * for manufacturer / software marked good / bad blocks
- */
- static inline int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
- {
- struct nand_chip *this = mtd->priv;
- bd->options &= ~NAND_BBT_SCANEMPTY;
- return create_bbt (mtd, this->data_buf, bd, -1);
- }
- 函数的作用是建立一张基于memory的坏块表。
- 将操作符的NAND_BBT_SCANEMPTY清除,并继续调用creat_bbt()函数。
- 271 /**
- * create_bbt – [GENERIC] Create a bad block table by scanning the device
- * @mtd: MTD device structure
- * @buf: temporary buffer
- * @bd: deor for the good/bad block search pattern
- * @chip: create the table for a specific chip, -1 read all chips.
- * Applies only if NAND_BBT_PERCHIP option is set
- *
- * Create a bad block table by scanning the device
- * for the given good/bad block identify pattern
- */
- static int create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
- {
- 真正的建立坏块表函数。chip参数是-1表示读取所有的芯片。
- 284 struct nand_chip *this = mtd->priv;
- int i, j, numblocks, len, scanlen;
- int startblock;
- loff_t from;
- size_t readlen, ooblen;
- printk (KERN_INFO ”Scanning device for bad blocks/n”);
- 一些变量声明,开机时那句话就是在这儿打印出来的。
- 292 if (bd->options & NAND_BBT_SCANALLPAGES)
- len = 1 << (this->bbt_erase_shift – this->page_shift);
- else {
- if (bd->options & NAND_BBT_SCAN2NDPAGE)
- len = 2;
- else
- len = 1;
- }
- 在前面我们定义了smallpage_memorybased这个结构体,现在里面NAND_BBT_SCANALLPAGES的终于用上了,对于1208芯片来说,len=2。
- 304 if (!(bd->options & NAND_BBT_SCANEMPTY)) {
- /* We need only read few bytes from the OOB area */
- scanlen = ooblen = 0;
- readlen = bd->len;
- } else {
- /* Full page content should be read */
- scanlen = mtd->oobblock + mtd->oobsize;
- readlen = len * mtd->oobblock;
- ooblen = len * mtd->oobsize;
- }
- 前面已经将NAND_BBT_SCANEMPTY清除了,这里肯定执行else的内容。需要将一页内容都读取出来。
- 316 if (chip == -1) {
- /* Note that numblocks is 2 * (real numblocks) here, see i+=2 below as it
- * makes shifting and masking less painful */
- numblocks = mtd->size >> (this->bbt_erase_shift – 1);
- startblock = 0;
- from = 0;
- } else {
- if (chip >= this->numchips) {
- printk (KERN_WARNING ”create_bbt(): chipnr (%d) > available chips (%d)/n”,
- chip + 1, this->numchips);
- return -EINVAL;
- }
- numblocks = this->chipsize >> (this->bbt_erase_shift – 1);
- startblock = chip * numblocks;
- numblocks += startblock;
- from = startblock << (this->bbt_erase_shift – 1);
- }
- 前面提到chip为-1,实际上我们只有一颗芯片,numblocks这儿是4096*2。
- 335 for (i = startblock; i < numblocks;) {
- int ret;
- if (bd->options & NAND_BBT_SCANEMPTY)
- if ((ret = nand_read_raw (mtd, buf, from, readlen, ooblen)))
- return ret;
- for (j = 0; j < len; j++) {
- if (!(bd->options & NAND_BBT_SCANEMPTY)) {
- size_t retlen;
- /* Read the full oob until read_oob is fixed to
- * handle single byte reads for 16 bit buswidth */
- ret = mtd->read_oob(mtd, from + j * mtd->oobblock,
- mtd->oobsize, &retlen, buf);
- if (ret)
- return ret;
- if (check_short_pattern (buf, bd)) {
- this->bbt[i >> 3] |= 0x03 << (i & 0x6);
- printk (KERN_WARNING ”Bad eraseblock %d at 0x%08x/n”,
- i >> 1, (unsigned int) from);
- break;
- }
- } else {
- if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
- this->bbt[i >> 3] |= 0x03 << (i & 0x6);
- printk (KERN_WARNING ”Bad eraseblock %d at 0x%08x/n”,
- i >> 1, (unsigned int) from);
- break;
- }
- }
- }
- i += 2;
- from += (1 << this->bbt_erase_shift);
- }
- return 0;
- 检测这4096个block,刚开始的nand_read_raw肯定不会执行。len是2,在j循环要循环2次。
- 每次循环真正要做的事情是下面的内容:
- ret = mtd->read_oob(mtd, from + j * mtd->oobblock, mtd->oobsize, &retlen, buf);
- read_oob()函数在nand_scan()里被指向nand_read_oob(),这个函数在Nand_base.c文件中,看来得回Nand_base.c看看了。
- 1397 /**
- * nand_read_oob – [MTD Interface] NAND read out-of-band
- * @mtd: MTD device structure
- * @from: offset to read from
- * @len: number of bytes to read
- * @retlen: pointer to variable to store the number of read bytes
- * @buf: the databuffer to put data
- *
- * NAND read out-of-band data from the spare area
- */
- static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
- {
- 才发现oob全称是out-of-band, from是偏移量,len是读取的长度,retlen是存储指针。
- 1409 int i, col, page, chipnr;
- struct nand_chip *this = mtd->priv;
- int blockcheck = (1 << (this->phys_erase_shift – this->page_shift)) – 1;
- DEBUG (MTD_DEBUG_LEVEL3, ”nand_read_oob: from = 0x%08x, len = %i/n”, (unsigned int) from, (int) len);
- /* Shift to get page */
- page = (int)(from >> this->page_shift);
- chipnr = (int)(from >> this->chip_shift);
- /* Mask to get column */
- col = from & (mtd->oobsize – 1);
- /* Initialize return length value */
- *retlen = 0;
- 一些初始化,blockcheck对于1208应该是(1<<(0xe-0x9)-1)=31。然后通过偏移量计算出要读取oob区的page,chipnr和col。
- 1425 /* Do not allow reads past end of device */
- if ((from + len) > mtd->size) {
- DEBUG (MTD_DEBUG_LEVEL0, ”nand_read_oob: Attempt read beyond end of device/n”);
- *retlen = 0;
- return -EINVAL;
- }
- /* Grab the lock and see if the device is available */
- nand_get_device (this, mtd , FL_READING);
- /* Select the NAND device */
- this->select_chip(mtd, chipnr);
- /* Send the read command */
- this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
- 不允许非法的读取,获取芯片控制权,发送读取OOB命令,这儿会调用具体硬件驱动中相关的Nand控制函数。
- 1442 /*
- * Read the data, if we read more than one page
- * oob data, let the device transfer the data !
- */
- i = 0;
- while (i < len) {
- int thislen = mtd->oobsize – col;
- thislen = min_t(int, thislen, len);
- this->read_buf(mtd, &buf[i], thislen);
- i += thislen;
- /* Read more ? */
- if (i < len) {
- page++;
- col = 0;
- /* Check, if we cross a chip boundary */
- if (!(page & this->pagemask)) {
- chipnr++;
- this->select_chip(mtd, -1);
- this->select_chip(mtd, chipnr);
- }
- /* Apply delay or wait for ready/busy pin
- * Do this before the AUTOINCR check, so no problems
- * arise if a chip which does auto increment
- * is marked as NOAUTOINCR by the board driver.
- */
- if (!this->dev_ready)
- udelay (this->chip_delay);
- else
- nand_wait_ready(mtd);
- /* Check, if the chip supports auto page increment
- * or if we have hit a block boundary.
- */
- if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
- /* For subsequent page reads set offset to 0 */
- this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
- }
- }
- }
- /* Deselect and wake up anyone waiting on the device */
- nand_release_device(mtd);
- /* Return happy */
- *retlen = len;
- return 0;
- 开始读取数据,while循环只要获取到oob区大小的数据即可。注意,read_buf才是最底层的读写Nand的函数,在我们的驱动中根据参数可以实现读取528byte全部内容,或者16byte的oob区。
- 如果一次没读完,就要继续再读,根据我们实际使用经验好像没出现过这种问题。
- 最后Return Happy~回到Nand_bbt.c的creat_bbt()函数,348行,好像都快忘记我们还没出creat_bbt()函数呢,我再把他贴一遍吧:
- 346 /* Read the full oob until read_oob is fixed to
- * handle single byte reads for 16 bit buswidth */
- ret = mtd->read_oob(mtd, from + j * mtd->oobblock,
- mtd->oobsize, &retlen, buf);
- if (ret)
- return ret;
- if (check_short_pattern (buf, bd)) {
- this->bbt[i >> 3] |= 0x03 << (i & 0x6);
- printk (KERN_WARNING ”Bad eraseblock %d at 0x%08x/n”,
- i >> 1, (unsigned int) from);
- break;
- }
- } else {
- if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
- this->bbt[i >> 3] |= 0x03 << (i & 0x6);
- printk (KERN_WARNING ”Bad eraseblock %d at 0x%08x/n”,
- i >> 1, (unsigned int) from);
- break;
- }
- }
- }
- i += 2;
- from += (1 << this->bbt_erase_shift);
- }
- return 0;
- }
- 刚刚如果不是Ruturn Happy,下面的352行就会返回错误了。接着会调用check_short_pattern()这个函数。
- 113 /**
- * check_short_pattern – [GENERIC] check if a pattern is in the buffer
- * @buf: the buffer to search
- * @td: search pattern deor
- *
- * Check for a pattern at the given place. Used to search bad block
- * tables and good / bad block identifiers. Same as check_pattern, but
- * no optional empty check
- *
- */
- static int check_short_pattern (uint8_t *buf, struct nand_bbt_descr *td)
- {
- int i;
- uint8_t *p = buf;
- /* Compare the pattern */
- for (i = 0; i < td->len; i++) {
- if (p[td->offs + i] != td->pattern[i])
- return -1;
- }
- return 0;
- }
- 检查读到的oob区是不是坏块就靠这个函数了。前面放了好久的struct nand_bbt_descr smallpage_memorybased终于用上了,挨个对比,有一个不一样直接返回-1,坏块就这样产生了。下面会将坏块的位置打印出来,并且将坏块记录在bbt表里面,在nand_scan_bbt()函数的开始我们就为bbt申请了空间。
- this->bbt[i >> 3] |= 0x03 << (i & 0x6);
- 为啥要右移3bit呢?首先i要右移1bit,因为前面乘以了2。由于没个block占用2bit的空间,一个char变量8bit,所以还再要右移2bit吧。
- 下面的check_pattern()函数调用不到的。
- 依次检测完所有block,creat_bbt()函数也顺利返回。
- 这样nand_memory_bbt()函数也正确返回。
- 接着是nand_scan_bbt()同样顺利结束。
- 最后nand_default_bbt()完成。
- 整个nand_scan()的工作终于完成咯,好长。
===============================================================
MTD的坏块管理(一)-快速了解MTD的坏块管理
1 人收藏此文章, 收藏此文章 发表于2个月前 , 已有65 次阅读 共0 个评论 1 人收藏此文章
由 于NAND Flash的现有工艺不能保证NAND的Memory Array在其生命周期中保持性能的可靠,因此在NAND芯片出厂的时候,厂家只能保证block 0不是坏块,对于其它block,则均有可能存在坏块,而且NAND芯片在使用的过程中也很容易产生坏块。因此,我们在读写NAND FLASH 的时候,需要检测坏块,同时还需在NAND驱动中加入坏块管理的功能。
NAND驱动在加载的时候,会调用nand_scan函数,对bad block table的搜寻,建立等操作就是在这个函数的第二部分,即nand_scan_tail函数中完成的。
在 nand_scan_tail函数中,会首先检查struct nand_chip结构体中的options成员变量是否被赋上了NAND_SKIP_BBTSCAN,这个宏表示跳过扫描bbt。所以,只有当你的 driver中没有为options定义NAND_SKIP_BBTSCAN时,MTD才会继续与bbt相关工作,即调用struct nand_chip中的scan_bbt函数指针所指向的函数,在MTD中,这个函数指针指向nand_default_bbt函数。
bbt有两种存储 方式,一种是把bbt存储在NAND芯片中,另一种是把bbt存储在内存中。对于前者,好处是驱动加载更快,因为它只会在第一次加载NAND驱动时扫描整 个NAND芯片,然后在NAND芯片的某个block中建立bbt,坏处是需要至少消耗NAND芯片一个block的存储容量;而对于后者,好处是不会耗 用NAND芯片的容量,坏处是驱动加载稍慢,因为存储在内存中的bbt每次断电后都不会保存,所以在每次加载NAND驱动时,都会扫描整个NAND芯片, 以便建立bbt。
如果你系统中的NAND芯片容量不是太大的话,我建议还是把bbt存储在内存中比较好,因为根据本人的使用经验,对一块容量为2G bits的NAND芯片,分别采用这两种存储方式的驱动的加载速度相差不大,甚至几乎感觉不出来。
建立bbt后,以后在做擦除等操作时,就不用每次都去验证当前block是否是个坏块了,因为从bbt中就可以得到这个信息。另外,若在读写等操作时,发现产生了新的坏块,那么除了标志这个block是个坏块外,也还需更新bbt。
接下来,介绍一下MTD是如何查找或者建立bbt的。
1、MTD中与bbt相关的结构体
struct nand_chip中的scan_bbt函数指针所指向的函数,即nand_default_bbt函数会首先检查struct nand_chip中options成员变量,如果当前NAND芯片是AG-AND类型的,会强制把bbt存储在NAND芯片中,因为这种类型的NAND 芯片中含有厂家标注的“好块”信息,擦除这些block时会导致丢失坏块信息。
接着 nand_default_bbt函数会再次检查struct nand_chip中options成员变量,根据它是否定义了NAND_USE_FLASH_BBT,而为struct nand_chip中3个与bbt相关的结构体附上不同的值,然后再统一调用nand_scan_bbt函数,nand_scan_bbt函数会那3个结 构体的不同的值做不同的动作,或者把bbt存储在NAND芯片中,或者把bbt存储在内存中。
在struct nand_chip中与bbt相关的结构体如下:
struct nand_chip {
……
uint8_t *bbt
struct nand_bbt_descr *bbt_td;
struct nand_bbt_descr *bbt_md;
struct nand_bbt_descr *badblock_pattern;
……
};
bbt指向 一块在nand_default_bbt函数中分配的内存,若options中没有定义NAND_USE_FLASH_BBT,MTD就直接在bbt指向 的内存中建立bbt,否则就会先从NAND芯片中查找bbt是否存在,若存在,就把bbt的内容读出来并保存到bbt指向的内存中,若不存在,则在bbt 指向的内存中建立bbt,最后把它写入到NAND芯片中去。
bbt_td、bbt_md和badblock_pattern就是在nand_default_bbt函数中赋值的3个结构体。它们虽然是相同的结构体类型,但却有不同的作用和含义。
其 中bbt_td和bbt_md是主bbt和镜像bbt的描述符(镜像bbt主要用来对bbt的update和备份),它们只在把bbt存储在NAND芯片 的情况下使用,用来从NAND芯片中查找bbt。若bbt存储在内存中,bbt_td和bbt_md将会被赋值为NULL。
badblock_pattern就是坏块信息的pattern,其中定义了坏块信息在oob中的存储位置,以及内容(即用什么值表示这个block是个坏块)。
通 常用1或2个字节来标志一个block是否为坏块,这1或2个字节就是坏块信息,如果这1或2个字节的内容是0xff,那就说明这个block是好的,否 则就是坏块。对于坏块信息在NAND芯片中的存储位置,small page(每页512 Byte)和big page(每页2048 Byte)的两种NAND芯片不尽相同。一般来说,small page的NAND芯片,坏块信息存储在每个block的第一个page的oob的第六个字节中,而big page的NAND芯片,坏块信息存储在每个block的第一个page的oob的第1和第2个字节中。
我 不能确定是否所有的NAND芯片都是如此布局,但应该绝大多数NAND芯片是这样的,不过,即使某种NAND芯片的坏块信息不是这样的存储方式也没关系, 因为我们可以在badblock_pattern中自己指定坏块信息的存储位置,以及用什么值来标志坏块(其实这个值表示的应该是“好块”,因为MTD会 把从oob中坏块信息存储位置读出的内容与这个值做比较,若相等,则表示是个“好块”,否则就是坏块)。
bbt_td、bbt_md和badblock_pattern的结构体类型定义如下:
struct nand_bbt_descr {
int options;
int pages[NAND_MAX_CHIPS];
int offs;
int veroffs;
uint8_t version[NAND_MAX_CHIPS];
int len;
int maxblocks;
int reserved_block_code;
uint8_t *pattern;
};
options:bad block table或者bad block的选项,可用的选择以及各选项具体表示什么含义,可以参考<Linux/mtd/nand.h>。
pages:bbt 专用。在查找bbt的时候,若找到了bbt,就把bbt所在的page号保存在这个成员变量中。若没找到bbt,就会把新建立的bbt的保存位置赋值给 它。因为系统中可能会有多个NAND芯片,我们可以为每一片NAND芯片建立一个bbt,也可以只在其中一片NAND芯片中建立唯一的一个bbt,所以这 里的pages是个维数为NAND_MAX_CHIPS的数值,用来保存每一片NAND芯片的bbt位置。当然,若只建立了一个bbt,那么就只使用 pages[0]。
offs、len和pattern:MTD会从oob的offs中读出len长度的内容,然后与pattern指针指向的内容做比较,若相等,则表示找到了bbt,或者表示这个block是好的。
veroffs和version:bbt专用。MTD会从oob的veroffs中读出一个字节的内容,作为bbt的版本值保存在version中。
maxblocks:bbt专用。MTD在查找bbt的时候,不会查找NAND芯片中所有的block,而是最多查找maxblocks个block。
2、bbt存储在内存中时的工作流程
前文说过,不管bbt是存储在NAND芯片中,还是存储在内存中,nand_default_bbt函数都会调用nand_scan_bbt函数。
nand_scan_bbt函数会判断bbt_td的值,若是NULL,则表示bbt存储在内存中,它就在调用nand_memory_bbt函数后返回。nand_memory_bbt函数的主要工作就是在内存中建立bbt,其实就是调用了create_bbt函数。
create_bbt 函数的工作方式很简单,就是扫描NAND芯片所有的block,读取每个block中第一个page的oob内容,然后根据oob中的坏块信息建立起 bbt,可以参见上节关于struct nand_bbt_descr中的offs、len和pattern成员变量的解释。
3、bbt存储在NAND芯片时的工作流程
相对于把bbt存储在内存中,这种方式的工作流程稍显复杂一点。
nand_scan_bbt函数首先从NAND芯片中读取bbt的内容,它读取的方式分为两种:
其 一是调用read_abs_bbts函数直接从给定的page地址读取,那么这个page地址在什么时候指定呢?就是在你的NAND driver中指定。前文说过,在struct nand_chip结构体中有两个成员变量,分别是bbt_td和bbt_md,MTD为它们附上了default的值,但是你也可以根据你的需要为它们 附上你自己定义的值。假如你为bbt_td和bbt_md的options成员变量定义了NAND_BBT_ABSPAGE,同时又把你的bbt所在的 page地址保存在bbt_td和bbt_md的pages成员变量中,MTD就可以直接在这个page地址中读取bbt了。值得一提的是,在实际使用时 一般不这么干,因为你不能保证你保存bbt的那个block就永远不会坏,而且这样也不灵活;
其二是调用那个search_read_bbts函数试着在NAND芯片的maxblocks(请见上文关于struct nand_bbt_descr中maxblocks的说明)个block中查找bbt是否存在,若找到,就可以读取bbt了。
MTD 查找bbt的过程为:如果你在bbt_td和bbt_md的options 成员变量中定义了 NAND_BBT_LASTBLOCK,那么MTD就会从NAND芯片的最后一个block开始查找(在default情况下,MTD就是这么干的),否 则就从第一个block开始查找。
与 查找oob中的坏块信息时类似,MTD会从所查找block的第一个page的oob中读取内容,然后与bbt_td或bbt_md中patter指向的 内容做比较,若相等,则表示找到了bbt,否则就继续查找下一个block。顺利的情况下,只需查找一个block中就可以找到bbt,否则MTD最多会 查找maxblocks个block。
若找到了bbt,就把该bbt所在的page地址保存到bbt_td或bbt_md的pages成员变量中,否则pages的值为-1。
如果系统中有多片NAND芯片,并且为每一片NAND芯片都建立一个bbt,那么就会在每片NAND芯片上重复以上过程。
接 着,nand_scan_bbt函数会调用check_create函数,该函数会判断是否找到了bbt,其实就是判断bbt_td或者bbt_md中 pages成员变量的值是否有效。若找到了bbt,就会把bbt从NAND芯片中读取出来,并保存到struct nand_chip中bbt指针指向的内存中;若没找到,就会调用create_bbt函数建立bbt(与bbt存储在内存中时情况一样),同时把bbt 写入到NAND芯片中去。
**** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****
MTD坏块管理(二)-内核获取Nandflash的参数过程
1 人收藏此文章, 收藏此文章 发表于2个月前 , 已有133 次阅读 共0 个评论 1 人收藏此文章
MTD坏块管理机制中,起着核心作用的数据结构是nand_chip,在此以TCC8900-Linux中MTD的坏块管理为例作一次介绍。
MTD在Linux内核中同样以模块的形式被启用,TCC_MTD_IO_Init()函数完成了nand_chip初始化、mtd_info初始注册,
坏块表的管理机制建立等工作。
nand_chip在TCC_MTD_IO_Init函数中的实例名称是this,mtd_info 的实例名称为TCC_mtd,这里有一个比较巧妙的处理方法:
TCC_mtd=kmalloc(sizeof(struct mtd_info)+sizeof(struct nand_chip),GFP_KERNEL);
this=(struct nand_chip*)(&TCC_mtd[1]);
在以后的操作中,只需得知TCC_mtd即可找到对应的nan_chip实例。
获得必要的信息后(包括nand_chip方法的绑定),流程进入nand_scan(TCC_mtd,1).
nand_scan(struct mdt_info *mtd, int maxchips);
调用nand_scan_ident(mtd,maxchips)和nand_scan_tail(mtd);
nand_scan_ident(…)调用了一个很重要的函数:nand_get_flash_type(…)
*从nand_get_flash_type(…)函数中可以看出每个nandflash前几个字节所代表的意思都是约定好了的:
第一个字节:制造商ID
第二个字节:设备ID
第三个字节:MLC 数据
第四个字节:extid (比较总要)
其中设备ID是访问nand_flash_ids表的参照,该表在drivers/mtd/nand/nand_ids.c中定义
Linux内核在nand_flash_ids参照表中,通过匹配上述设备ID来查找nandflash的详细信息,
nand_flash_ids中的举例如下:
struct nand_flash_dev nand_flash_ids[]={
……
{“NAND 16MiB 1,8V 8-bit”, 0x33, 512, 16, 0x4000, 0},
{“NAND 16MiB 3,3V 8-bit”, 0x73, 512, 16, 0x4000, 0},
{“NAND 16MiB 1,8V 16-bit”, 0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16},
{“NAND 16MiB 3,3V 16-bit”, 0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16},
……
}
466 struct nand_flash_dev {
467 char *name;
468 int id;
469 unsigned long pagesize;
470 unsigned long chipsize;
471 unsigned long erasesize;
472 unsigned long options;
473 };
值得一提的是,MTD子系统会把从nand_flash_ids表中找到的chipsize复制给mtd->size,这在有些应用中显得不合适,
在有些方案中,并不是把nandflash的所有存储空间都划分为MTD分区,Telechips的TCC89XX方案就是这样,4G的nandflash
上,可以划分任意大小的MTD分区,错误的mtd->size的后果非常严重,造成系统启动慢,整个MTD的坏块管理机制瘫痪等等。
随后,nand_get_flash_type通过extid计算出了以下信息:
mtd可写区大小:mtd->writesize=1024<<(extid&0x03);
这里可以看成1024*(1*2的(extid&0x03)次方),
mtdoob区大小:extid>>=2;mtd->oobsize = (8<<(extid&0x1))*(mtd->writesize>>9);
每512字节对应(8*2的(extid&0x1)次方)字节oob数据
mtd擦写块大小:extid>>=2;mtd->erasesize=(64*1024)<<(extid&0x03);
nand数据宽度 :extid>>=2;busw=(extid&0x01)?NAND_BUSEWIDTH_16:0; 现在大多为8位数据宽度
可以看出第四个字节extid的意义:
高|0 | 0 | 00 | 0 | 0 | 00 |低
|无用|数据宽度|擦写块算阶|无用|oob算阶| 可写区算阶|
nand_get_flash_type(…)还确立了nandflash中的坏块标记在oob信息中的位置:
if(mtd->writesize>512||(busw&NAND_BUSWIDTH_16))
chip->badblockpos = NAND_LARGE_BADBLOCKS_POS;//大页面flash的坏块信息存储地址为oob信息中的第1个字节开始处
else
chip->badblockpos = NAND_SMALL_BADBLOCKS_POS;//大页面flash的坏块信息存储地址为oob信息中的第6个字节开始处
对于Samsun和Hynix的MLC型nandflash,坏块标记所在的页是每块的最后一个页,而Samsung,Hynix,和AMD的SLC型nandflash
中,坏块标记分别保存在每块开始的第1,2个页中,其他型号的nandflash大多都保存在第一个也中,为此需要作下标记:
坏块标记保存在块的最后一页中:chip->options |= NAND_BBT_SCANLASTPAGE;
坏块标记保存在块的第1,2页中 :chip->options |= NAND_BBT_SCAN2NDPAGE;
nand_scan之后调用nand_scan_tail(mtd)函数,
nand_scan_tail(…)函数主要完成MTD实例中各种方法的绑定,例如:
3338 mtd->read = nand_read;
3339 mtd->write = nand_write;
3340 mtd->panic_write = panic_nand_write;
3341 mtd->read_oob = nand_read_oob;
3342 mtd->write_oob = nand_write_oob;
3343 mtd->sync = nand_sync;
nand_scan_tail(…)调用chip->scan_bbt()完成坏块表的有关操作。
chip->scan_bbt的绑定过程是在nand_scan_ident()->nand_set_defaults():chip->scan_bbt = nand_default_bbt.
即真正用于坏块操作的是nand_default_bbt函数,该函数在nand_bbt.c中被定义。