版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。 本文链接:https://blog.csdn.net/u010700066/article/details/81836166
黑塞矩阵
黑塞矩阵(Hessian Matrix),又译作海森矩阵、海瑟矩阵、海塞矩阵等,是一个多元函数的二阶偏导数构成的方阵,描述了函数的局部曲率。黑塞矩阵最早于19世纪由德国数学家Ludwig Otto Hesse提出,并以其名字命名。黑塞矩阵常用于牛顿法解决优化问题,利用黑塞矩阵可判定多元函数的极值问题。在工程实际问题的优化设计中,所列的目标函数往往很复杂,为了使问题简化,常常将目标函数在某点邻域展开成泰勒多项式来逼近原函数,此时函数在某点泰勒展开式的矩阵形式中会涉及到黑塞矩阵。
阶对称矩阵。
Hessian矩阵判断
(1)如果是正定矩阵,则临界点处是一个局部极小值
(2)如果是负定矩阵,则临界点处是一个局部极大值
(3)如果是不定矩阵,则临界点处不是极值
实二次型矩阵为正定二次型的判断方法
判断一个矩阵是否是正定方法 :
1、顺序主子式:实对称矩阵为正定矩阵的充要条件是的各顺序主子式都大于零。
2、特征值:矩阵的特征值全大于零,矩阵为正定。矩阵的特征值全小于零,矩阵为负定。否则是不定的。
牛顿法参考如下:
Jacobian矩阵和Hessian阵 — 讲解hessian及其求解应用
Hessian应用
Hessian矩阵以及在图像中的应用
图像处理之Hessian矩阵提取关键点