安装gazebo_手把手教你用Gazebo仿真UUV水下机器人

前言

本节教程演示UUV的一些玩法,基于开源项目UUV,官方介绍文档uuvsimulator  https://uuvsimulator.github.io/packages/uuv_simulator/intro/

仿真环境

系统:ubuntu16.04
软件:ROS – kinetic
仿真:gazebo7

安装仿真软件

官网介绍目前支持的版本有三个:kunetic、lunar、melodic

安装命令:

kinetic版本:sudo apt install ros-kinetic-uuv-simulatorlunar版本:sudo apt install ros-lunar-uuv-simulatormelodic版本:sudo apt install ros-melodic-uuv-simulator

如果希望从源码安装的朋友参考这里:

源码安装教程   https://uuvsimulator.github.io/installation/

这里不推荐源码安装,因为看了下github项目的issue中很多人显示安装报错,所以emmm省的折腾。

启动AUV海底世界

启动带海底的世界执行命令:

roslaunch uuv_gazebo_worlds auv_underwater_world.launch

水世界效果图如下(还是很帅的天空的云和海水都是在动的):

523a6c0df978042e91790e50ea8a309c.gif

启动赫尔库勒斯沉船的世界执行命令:

roslaunch uuv_gazebo_worlds herkules_ship_wreck.launch

ee1ed00eaff830179d91c706017ad6ae.png启动湖泊

roslaunch uuv_gazebo_worlds lake.launch

2db04828eff67fbd9b430e4abb3b20b9.png

其他的一些场景

roslaunch uuv_gazebo_worlds mangalia.launchroslaunch uuv_gazebo_worlds munkholmen.launchroslaunch uuv_gazebo_worlds ocean_waves.launch

!注意这里的海浪都只是视觉效果不会将波浪的载荷加载在水下机器人上

水下机器人运动控制

启动环境和水下机器人pid控制

执行命令:

roslaunch uuv_gazebo start_pid_demo_with_teleop.launch
这里机器人的速度控制还是经典的cmd_vel话题,我们可以自己创建速度控制脚本teletop.py:
#!/usr/bin/env pythonimport rospyfrom geometry_msgs.msg import Twistimport sys, select, osif os.name == 'nt':  import msvcrtelse:  import tty, termiosFETCH_MAX_LIN_VEL = 5FETCH_MAX_ANG_VEL = 2.84LIN_VEL_STEP_SIZE = 0.01ANG_VEL_STEP_SIZE = 0.1msg = """Control Your Robot!---------------------------Moving around:        w   a    s    d        x"""e = """Communications Failed"""def getKey():    if os.name == 'nt':      return msvcrt.getch()    tty.setraw(sys.stdin.fileno())    rlist, _, _ = select.select([sys.stdin], [], [], 0.1)    if rlist:        key = sys.stdin.read(1)    else:        key = ''    termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings)    return keydef vels(target_linear_vel, target_angular_vel):    return "currently:tlinear vel %st angular vel %s " % (target_linear_vel,target_angular_vel)def makeSimpleProfile(output, input, slop):    if input > output:        output = min( input, output + slop )    elif input < output:        output = max( input, output - slop )    else:        output = input    return outputdef constrain(input, low, high):    if input < low:      input = low    elif input > high:      input = high    else:      input = input    return inputdef checkLinearLimitVelocity(vel):    vel = constrain(vel, -FETCH_MAX_LIN_VEL, FETCH_MAX_LIN_VEL)    return veldef checkAngularLimitVelocity(vel):    vel = constrain(vel, -FETCH_MAX_ANG_VEL, FETCH_MAX_ANG_VEL)    return velif __name__=="__main__":    if os.name != 'nt':        settings = termios.tcgetattr(sys.stdin)    rospy.init_node('fetch_teleop')    pub = rospy.Publisher('/rexrov/cmd_vel', Twist, queue_size=10)    status = 0    target_linear_vel   = 0.0    target_angular_vel  = 0.0    control_linear_vel  = 0.0    control_angular_vel = 0.0    try:        print(msg)        while(1):            key = getKey()            if key == 'w' :                target_linear_vel = checkLinearLimitVelocity(target_linear_vel + LIN_VEL_STEP_SIZE)                status = status + 1                print(vels(target_linear_vel,target_angular_vel))            elif key == 'x' :                target_linear_vel = checkLinearLimitVelocity(target_linear_vel - LIN_VEL_STEP_SIZE)                status = status + 1                print(vels(target_linear_vel,target_angular_vel))            elif key == 'a' :                target_angular_vel = checkAngularLimitVelocity(target_angular_vel + ANG_VEL_STEP_SIZE)                status = status + 1                print(vels(target_linear_vel,target_angular_vel))            elif key == 'd' :                target_angular_vel = checkAngularLimitVelocity(target_angular_vel - ANG_VEL_STEP_SIZE)                status = status + 1                print(vels(target_linear_vel,target_angular_vel))            elif key == ' ' or key == 's' :                target_linear_vel   = 0.0                control_linear_vel  = 0.0                target_angular_vel  = 0.0                control_angular_vel = 0.0                print(vels(target_linear_vel, target_angular_vel))            else:                if (key == 'x03'):                    break            if status == 20 :                print(msg)                status = 0            twist = Twist()            control_linear_vel = makeSimpleProfile(control_linear_vel, target_linear_vel, (LIN_VEL_STEP_SIZE/2.0))            twist.linear.x = control_linear_vel; twist.linear.y = 0.0; twist.linear.z = 0.0            control_angular_vel = makeSimpleProfile(control_angular_vel, target_angular_vel, (ANG_VEL_STEP_SIZE/2.0))            twist.angular.x = 0.0; twist.angular.y = 0.0; twist.angular.z = control_angular_vel            pub.publish(twist)    except:        print(e)    finally:        twist = Twist()        twist.linear.x = 0.0; twist.linear.y = 0.0; twist.linear.z = 0.0        twist.angular.x = 0.0; twist.angular.y = 0.0; twist.angular.z = 0.0        pub.publish(twist)    if os.name != 'nt':        termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings)

运行脚本就可以控制船运动了:

python teletop.py
生成螺旋线控制水下机器人运动

执行命令启动pid控制和环境:

roslaunch uuv_gazebo start_pid_demo_with_teleop.launch

生成螺旋线并巡线(这里我生成的是2股螺旋线):

roslaunch uuv_control_utils start_helical_trajectory.launch uuv_name:=rexrov n_turns:=2

1b6ec6a0fd3d69d767d701caacc60959.png

发布一组导航点导航执行命令启动pid控制和环境:

roslaunch uuv_gazebo start_pid_demo_with_teleop.launch

执行命令生成直线路径:

roslaunch uuv_control_utils send_waypoints_file.launch uuv_name:=rexrov interpolator:=linear

613ac581333151591c062ee3070dc1dc.png

机器人路径根据贝塞尔曲线原理生成,可以保证轨迹上的点速度方向是连续的,并且规定路径点生成的整条路径是必过路径点的。

小编这里写了个二维三阶贝赛尔曲线的路径生成的代码:https://github.com/xmy0916/bezier大家可以参考参考!

执行命令生成三维贝赛尔曲线路径:

roslaunch uuv_control_utils send_waypoints_file.launch uuv_name:=rexrov interpolator:=cubic

b2e1fedd689c84803976e06976e96d90.png更多操作参考:项目官方文档  https://uuvsimulator.github.io/packages/uuv_simulator/intro/项目github地址https://github.com/uuvsimulator/

古月居原创作者签约计划已开启,网站(guyuehome.com)已上线【投稿】功能,欢迎大家积极投稿,原创优质文章作者将有机会成为古月居签约作者。

c9c881b949c19e8ee3471ad249aa6268.png

b2554e240e7c06f3a0edfb99afc09851.gif

Published by

风君子

独自遨游何稽首 揭天掀地慰生平