大数据分析的常用方法有什么

大数据分析方法主要有五种:1.漏斗分析法;2. 对比分析法;3. 可视化分析;4. 预测性分析能力;5. 用户分析法。我们在下文详细介绍这五种方法。

一、 漏斗分析法

漏斗分析模型是业务分析中的重要方法,最常见的是应用于营销分析中,由于营销过程中的每个关键节点都会影响到最终的结果,所以在精细化运营应用广泛的今天,漏斗分析方法可以帮助我们把握每个转化节点的效率,从而优化整个业务流程。

往往关注三个要点:

①   第一,从开始到结尾,整体的转化效率是多少?

②   第二,每一步的转化率是多少?

③   第三,哪一步流失最多,原因在什么地方?流失的用户符合哪些特征?

通过漏斗对比分析,从差异中找到优化方法对比不同用户群体、不同营销方式等的漏斗分析,可以帮助我们快速发现用户特点、营销方式的转化优势,找到在转化环节中,针对不同用户可优化的步骤,或营销方法中可强化的地方。

二、 对比分析法

对比分析法也称比较分析法,是将两个或两个以上相互联系的指标数据进行比较,分析其变化情况,了解事物的本质特征和发展规律。

在数据分析中,常用到的分3类:时间对比、空间对比以及标准对比。

①   时间对比:

同比:某个周期的时段与上一个周期的相同时段比较,如今年的6月比去年的6月,本周的周一比上周的周一等等。

环比:某个时段与其上一个时长相等的时段做比较,比如本周环比上周等等。

②   空间对比:

即在相同时间范围内与不同空间指标数据进行对比。例如:不同部门、不同业务人员、不同地区等进行对比,比如各省份订单销售数据的差别对比,可以得出产品的优势地区重点突破,平衡人力物力等。

③   标准对比:

业务数据通常会设定目标计划,标准对比可以通过目前数据与设定的目标计划之间的对比,了解目前发展进程,完成进度等,了解差距后可以及时调整策略。

三、 可视化分析

不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。

四、 预测性分析能力

数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。由于非结构化数据的多样性带来了数据分析的新的挑战,需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。

五、 用户分析法

用户分析是互联网运营的核心,常用的分析方法包括:活跃分析,留存分析,用户分群,用户画像等。在刚刚说到的RARRA模型中,用户活跃和留存是非常重要的环节,通过对用户行为数据的分析,对产品或网页设计进行优化,对用户进行适当引导等。

通常我们会日常监控「日活」、「月活」等用户活跃数据,来了解新增的活跃用户数据,了解产品或网页是否得到了更多人的关注,但是同时,也需要做留存分析,关注新增的用户是否真正的留存下来成为固定用户,留存数据才是真正的用户增长数据,才能反映一段时间产品的使用情况,关于活跃率、留存率的计算。

Published by

风君子

独自遨游何稽首 揭天掀地慰生平