博弈论里有个概念叫做 common knowledge(共同知识), 真要是解释起来,可以长篇大论说上几个小时。不过有个故事便于理解它, 也可以说这是一个测试逻辑的故事,看看你有没有能力把最终的现象解释清楚。
- 博弈论既要推导自己的可能结论,也要试着推理其他(所有)人的结论,
- 第一个晚上没有人痛哭,自己不会哭,因为他看到其他 99 人都是不贞的,从自己的角度去揣度别人,其他人都没有哭,如果有人哭,说明他确定他自己的妻子不贞。事实是,其他人都没哭,至少存在两个妻子对自己不贞;
1. 问题
故事发生在一个村庄,村里有100对夫妻,他们都是地道的逻辑学家(智能的);村里有一些奇特的风俗:每天晚上,村里的男人们都将点起篝火,绕圈围坐举行会议,议题是谈论自己的妻子。在会议开始时,如果一个男人有理由相信他的妻子对他总是守贞的,那么他就在会议上当众赞扬她的美德。另一方面,如果在会议之前的任何时间,只要他发现他妻子不贞的证据,那他就会在会议上悲鸣怯哭,并企求神灵严厉地惩罚她。再则,如果一个妻子曾有不贞,那她和她的情人会立即告知村里除她丈夫之外所有的已婚男人(奇异的传统风俗)。所有这些传统和风俗都是村民的共同知识。
事实上,每个妻子都已对丈夫不忠。于是每个丈夫都知道除自己妻子之外其他人的妻子都是不贞的女子,因而每个晚上的会议上每个男人都赞美自己的妻子。
这种状况持续了很多年,直到有一天来了一位传教士。传教士参加了篝火会议,并听到每个男人都在赞美自己的妻子,他站起来走到围坐圆圈的中心,大声地提醒说:“这个村子里有一个妻子已经不贞了。”在此后的99个晚上,丈夫们继续赞美各自的妻子,但在第100个晚上,他们全都悲鸣怯哭,并企求神灵严惩自己的妻子。
为什么会有这样的结果?先对共同知识 common knowledge 作以解释。
- 解释一:共同知识指“所有参与人知道,所有参与人知道所有参与人知道,所有参与人知道所有参与人知道所有参与人知道…”。
- 解释二:如果每个参与人都知道某个事实,每个参与人都知道每个参与人都知道它,如此等等,从而形如“(每个参与人都知道)k (k次方)每个参与人都知道它”的语句对k=0,1,2,…都是正确的,那我们就称这个事实为参与人中间的共同知识。
- 解释三:这是一个“由己及人,由人及己”的无限推理过程,是k→∞时的高阶知识((每个人)k-1) (k-1次方)。一件事一旦在某个群体中成为共同知识,则从任何一个个体出发,他对这件事的理解等等都已达到了完全的统一,不再有任何层面的不确定性(奥曼,1976)。
2. 解释
下面是对这个故事的解释。
首先要明确,任何一个丈夫都知道除自己妻子以外的其他女人的真实忠贞状况:
- 若只有一个妻子不贞,她的丈夫能够立刻知道这个不贞的女人就是自己的妻子,因为他知道了全部其他人的妻子,也就知道了自己的,如果只有一个,那就是自己的。
既然如此,那么在传教士访问后的第一个晚上,丈夫A1没有哭,那就意味着确实存在一个女子不贞,若这个女人是丈夫 A1 的妻子,那么他当晚便会哭泣。但事实是他并没有哭,说明 A1 推断这个不贞的女人是他所知道的除自己妻子外的 99 个女子其中之一。对每一个丈夫 An 均是如此,他们既知道这个不贞的女子不是自己的妻子,也知道其他丈夫知道这个女子也不是他们的妻子。由此,从“第一个晚上没有男人哭”中可推断出:有两个女子已经不贞。在传教士走后的第二晚上,既然已推断出有两个女子不贞,而 A1 只知道一个,那另一个就是自己的妻子,故丈夫A1应该在“第二个晚上哭”。然而第二个晚上“丈夫A1也没有哭”,由此丈夫们推断出:已有三个女子不贞。由归纳法可以证明,对于1和100之间的任意正整数k,如果恰有k个妻子不贞,那么在传教士走后的连续k-1个晚上,所有的丈夫照样各自称赞自己的妻子,但在第k个晚上,k个不贞妻子的丈夫会悲鸣怯哭,于是,在99个赞扬之夜过后的第100个晚上,每个丈夫都知道一定有100个不贞的妻子。不幸的是包括自己的妻子在内!
3. 思考
传教士究竟告诉了丈夫们什么?每个丈夫都知道有99个不贞的妻子,故传教士所说的已经有一个女子不贞的话对任何人来说都不是什新闻。但“传教士对所有100个男人做了一个声明”是 common knowledge,从而这个传教士所声明的内容(有一个妻子不贞)也就成了100个男人之间的common knowledge。在传教士宣告之前,每个形如“(每个丈夫知道)k有一个妻子不贞”的判断对于k≤99都是正确的,但对于K=100就不正确了。例如,若从1到100对丈夫们进行编号,则1已经知道2已经知道3已经知道……99已经知道100的妻子是不贞的,但1不知道2已经知道3已经知道……99已经知道100已经知道1的妻子是不贞的。因而从这个寓言中引申出的含义是,从一个共同知识的事实推出的结果与从只知道每个人已经知道每个人已经知道的事实推出的结果可以非常不同。
4. 举一反三
- 山谷里 100 个蓝眼睛的龙,100 个红眼睛的龙,它们各自不知道自己的眼睛颜色(知道自己眼睛颜色的龙就必须死),但知道其他所有龙的眼睛颜色。突然有一天,被告知,至少有一个龙的眼睛颜色是红色的,山谷中所有龙的结局将会怎样?
考察第一天,假使只有一只龙的眼睛是红色的,当它看到其他龙的眼睛颜色的时候,它就会确定自己的眼睛颜色,就会死掉。但现在没有,可见至少有两条龙的眼睛颜色是红色的。如果只有两条龙的眼睛颜色是红色的,则除了这两条龙以外的其他龙就会知道自己的颜色,也会死掉。⇒ 至少有三只龙的眼睛是红色的。